# Intialize the camera, here we can specify different image size # or any other parameter that Camera allows c = Camera(bit_depth=10, width=100, height=50) # Fill the information data['width'] = c.width data['height'] = c.height # Maximum exposure for test exposure_max = 9000000 # Find the camera parameters for the test c.exposure = exposure_max c.blackoffset = get_emva_blackoffset(c) c.K = get_emva_gain(c) # Find the radiance that will saturate the camera at our maximum exposure time saturation_radiance = c.get_radiance_for() # Initialize the exposure for the spatial measure exposure_spatial = None # Loop through the exposures for exposure in np.linspace(c.exposure_min, exposure_max, 100): c.exposure = exposure data['temporal'][exposure] = {} # For each exposure, take to measurements (bright, dark) for radiance in (saturation_radiance, 0.0): photons = c.get_photons(radiance)
# or any other parameter that Camera allows c = Camera(bit_depth=10, img_x=100, img_y=50) # Fill the information data['width'] = c.img_x data['height'] = c.img_y # Maximum exposure for test exposure_max = 9000000 # Find the camera parameters for the test c.exposure = exposure_max c.blackoffset = get_emva_blackoffset(c) c.K = get_emva_gain(c) # Find the radiance that will saturate the camera at our maximum exposure time saturation_radiance = c.get_radiance_for() # Initialize the exposure for the spatial measure exposure_spatial = None # Loop through the exposures for exposure in np.linspace(c.exposure_min, exposure_max, 100): c.exposure = exposure data['temporal'][exposure] = {} # For each exposure, take to measurements (bright, dark) for radiance in (saturation_radiance, 0.0): photons = c.get_photons(radiance)