def test_nans(self): # Test that less than 2 texp will yield a NaN for u_I_mean data = {'temporal': {'texp': [0, 1]}, 'spatial': {}} r = Results1288(data) self.assertIs(r.u_I_mean, np.nan) # Test that a negative slope for t vs s2_ydark will yield Nan for # u_I_var data['temporal']['s2_ydark'] = [1, 0] r = Results1288(data) self.assertIs(r.u_I_var, np.nan) # Test that a negative s2y_dark will yield a Nan for DSNU1288 data['spatial'] = { 'avg_var_dark': 0., 'var_mean_dark': 1., 'L_dark': 3 } r = Results1288(data) self.assertIs(r.DSNU1288, np.nan) self.assertIs(r.DSNU1288_DN(), np.nan) del r
def _init(pixel_area=0, **kwargs): # create dataset dataset = DatasetGenerator(**kwargs) # parse dataset parser = ParseEmvaDescriptorFile(dataset.descriptor_path) # load image data loader = LoadImageData(parser.images) # create data data = Data1288(loader.data) # Make results object px = pixel_area if pixel_area == 0: px = dataset.cam.pixel_area results = Results1288(data.data, pixel_area=px) return dataset, parser, loader, data, results
def __init__(self, fname): parser = ParseEmvaDescriptorFile(fname) imgs = LoadImageData(parser.images) dat = Data1288(imgs.data) self._results = Results1288(dat.data)