Exemple #1
0
  def _fixed_conv(self, x, f_size, out_filters, stride, is_training,
                  stack_convs=2):
    """Apply fixed convolution.

    Args:
      stacked_convs: number of separable convs to apply.
    """

    for conv_id in range(stack_convs):
      inp_c = self._get_C(x)
      if conv_id == 0:
        strides = self._get_strides(stride)
      else:
        strides = [1, 1, 1, 1]

      with tf.variable_scope("sep_conv_{}".format(conv_id)):
        w_depthwise = create_weight("w_depth", [f_size, f_size, inp_c, 1])
        w_pointwise = create_weight("w_point", [1, 1, inp_c, out_filters])
        x = tf.nn.relu(x)
        x = tf.nn.separable_conv2d(
          x,
          depthwise_filter=w_depthwise,
          pointwise_filter=w_pointwise,
          strides=strides, padding="SAME", data_format=self.data_format)
        x = batch_norm(x, is_training, data_format=self.data_format)

    return x
Exemple #2
0
  def _maybe_calibrate_size(self, layers, out_filters, is_training):
    """Makes sure layers[0] and layers[1] have the same shapes."""

    hw = [self._get_HW(layer) for layer in layers]
    c = [self._get_C(layer) for layer in layers]

    with tf.variable_scope("calibrate"):
      x = layers[0]
      if hw[0] != hw[1]:
        assert hw[0] == 2 * hw[1]
        with tf.variable_scope("pool_x"):
          x = tf.nn.relu(x)
          x = self._factorized_reduction(x, out_filters, 2, is_training)
      elif c[0] != out_filters:
        with tf.variable_scope("pool_x"):
          w = create_weight("w", [1, 1, c[0], out_filters])
          x = tf.nn.relu(x)
          x = tf.nn.conv2d(x, w, [1, 1, 1, 1], "SAME",
                           data_format=self.data_format)
          x = batch_norm(x, is_training, data_format=self.data_format)

      y = layers[1]
      if c[1] != out_filters:
        with tf.variable_scope("pool_y"):
          w = create_weight("w", [1, 1, c[1], out_filters])
          y = tf.nn.relu(y)
          y = tf.nn.conv2d(y, w, [1, 1, 1, 1], "SAME",
                           data_format=self.data_format)
          y = batch_norm(y, is_training, data_format=self.data_format)
    return [x, y]
Exemple #3
0
  def _enas_cell(self, x, curr_cell, prev_cell, op_id, out_filters):
    """Performs an enas operation specified by op_id."""

    num_possible_inputs = curr_cell + 1

    with tf.variable_scope("avg_pool"):
      avg_pool = tf.layers.average_pooling2d(
        x, [3, 3], [1, 1], "SAME", data_format=self.actual_data_format)
      avg_pool_c = self._get_C(avg_pool)
      if avg_pool_c != out_filters:
        with tf.variable_scope("conv"):
          w = create_weight(
            "w", [num_possible_inputs, avg_pool_c * out_filters])
          w = w[prev_cell]
          w = tf.reshape(w, [1, 1, avg_pool_c, out_filters])
          avg_pool = tf.nn.relu(avg_pool)
          avg_pool = tf.nn.conv2d(avg_pool, w, strides=[1, 1, 1, 1],
                                  padding="SAME", data_format=self.data_format)
          avg_pool = batch_norm(avg_pool, is_training=True,
                                data_format=self.data_format)

    with tf.variable_scope("max_pool"):
      max_pool = tf.layers.max_pooling2d(
        x, [3, 3], [1, 1], "SAME", data_format=self.actual_data_format)
      max_pool_c = self._get_C(max_pool)
      if max_pool_c != out_filters:
        with tf.variable_scope("conv"):
          w = create_weight(
            "w", [num_possible_inputs, max_pool_c * out_filters])
          w = w[prev_cell]
          w = tf.reshape(w, [1, 1, max_pool_c, out_filters])
          max_pool = tf.nn.relu(max_pool)
          max_pool = tf.nn.conv2d(max_pool, w, strides=[1, 1, 1, 1],
                                  padding="SAME", data_format=self.data_format)
          max_pool = batch_norm(max_pool, is_training=True,
                                data_format=self.data_format)

    x_c = self._get_C(x)
    if x_c != out_filters:
      with tf.variable_scope("x_conv"):
        w = create_weight("w", [num_possible_inputs, x_c * out_filters])
        w = w[prev_cell]
        w = tf.reshape(w, [1, 1, x_c, out_filters])
        x = tf.nn.relu(x)
        x = tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding="SAME",
                         data_format=self.data_format)
        x = batch_norm(x, is_training=True, data_format=self.data_format)

    out = [
      self._enas_conv(x, curr_cell, prev_cell, 3, out_filters),
      self._enas_conv(x, curr_cell, prev_cell, 5, out_filters),
      avg_pool,
      max_pool,
      x,
    ]

    out = tf.stack(out, axis=0)
    out = out[op_id, :, :, :, :]
    return out
Exemple #4
0
    def _model(self, images, is_training, reuse=False):
        with tf.variable_scope(self.name, reuse=reuse):
            layers = []

            out_filters = self.out_filters
            with tf.variable_scope("stem_conv"):
                w = create_weight("w", [3, 3, 3, out_filters])
                x = tf.nn.conv2d(images,
                                 w, [1, 1, 1, 1],
                                 "SAME",
                                 data_format=self.data_format)
                x = batch_norm(x, is_training, data_format=self.data_format)
                layers.append(x)

            if self.whole_channels:
                start_idx = 0
            else:
                start_idx = self.num_branches
            for layer_id in range(self.num_layers):
                with tf.variable_scope("layer_{0}".format(layer_id)):
                    if self.fixed_arc is None:
                        x = self._enas_layer(layer_id, layers, start_idx,
                                             out_filters, is_training)
                    else:
                        x = self._fixed_layer(layer_id, layers, start_idx,
                                              out_filters, is_training)
                    layers.append(x)
                    if layer_id in self.pool_layers:
                        if self.fixed_arc is not None:
                            out_filters *= 2
                        with tf.variable_scope("pool_at_{0}".format(layer_id)):
                            pooled_layers = []
                            for i, layer in enumerate(layers):
                                with tf.variable_scope("from_{0}".format(i)):
                                    x = self._factorized_reduction(
                                        layer, out_filters, 2, is_training)
                                pooled_layers.append(x)
                            layers = pooled_layers
                if self.whole_channels:
                    start_idx += 1 + layer_id
                else:
                    start_idx += 2 * self.num_branches + layer_id
                print(layers[-1])

            x = global_avg_pool(x, data_format=self.data_format)
            if is_training:
                x = tf.nn.dropout(x, self.keep_prob)
            with tf.variable_scope("fc"):
                if self.data_format == "NWHC":
                    inp_c = x.get_shape()[3].value
                elif self.data_format == "NCHW":
                    inp_c = x.get_shape()[1].value
                else:
                    raise ValueError("Unknown data_format {0}".format(
                        self.data_format))
                w = create_weight("w", [inp_c, 10])
                x = tf.matmul(x, w)
        return x
Exemple #5
0
  def _factorized_reduction(self, x, out_filters, stride, is_training):
    """Reduces the shape of x without information loss due to striding."""
    assert out_filters % 2 == 0, (
        "Need even number of filters when using this factorized reduction.")
    if stride == 1:
      with tf.variable_scope("path_conv"):
        inp_c = self._get_C(x)
        w = create_weight("w", [1, 1, inp_c, out_filters])
        x = tf.nn.conv2d(x, w, [1, 1, 1, 1], "SAME",
                         data_format=self.data_format)
        x = batch_norm(x, is_training, data_format=self.data_format)
        return x

    stride_spec = self._get_strides(stride)
    # Skip path 1
    path1 = tf.nn.avg_pool(
        x, [1, 1, 1, 1], stride_spec, "VALID", data_format=self.data_format)
    with tf.variable_scope("path1_conv"):
      inp_c = self._get_C(path1)
      w = create_weight("w", [1, 1, inp_c, out_filters // 2])
      path1 = tf.nn.conv2d(path1, w, [1, 1, 1, 1], "VALID",
                           data_format=self.data_format)

    # Skip path 2
    # First pad with 0"s on the right and bottom, then shift the filter to
    # include those 0"s that were added.
    if self.data_format == "NHWC":
      pad_arr = [[0, 0], [0, 1], [0, 1], [0, 0]]
      path2 = tf.pad(x, pad_arr)[:, 1:, 1:, :]
      concat_axis = 3
    else:
      pad_arr = [[0, 0], [0, 0], [0, 1], [0, 1]]
      path2 = tf.pad(x, pad_arr)[:, :, 1:, 1:]
      concat_axis = 1

    path2 = tf.nn.avg_pool(
        path2, [1, 1, 1, 1], stride_spec, "VALID", data_format=self.data_format)
    with tf.variable_scope("path2_conv"):
      inp_c = self._get_C(path2)
      w = create_weight("w", [1, 1, inp_c, out_filters // 2])
      path2 = tf.nn.conv2d(path2, w, [1, 1, 1, 1], "VALID",
                           data_format=self.data_format)

    # Concat and apply BN
    final_path = tf.concat(values=[path1, path2], axis=concat_axis)
    final_path = batch_norm(final_path, is_training,
                            data_format=self.data_format)

    return final_path
Exemple #6
0
  def _enas_conv(self, x, curr_cell, prev_cell, filter_size, out_filters,
                 stack_conv=2):
    """Performs an enas convolution specified by the relevant parameters."""

    with tf.variable_scope("conv_{0}x{0}".format(filter_size)):
      num_possible_inputs = curr_cell + 2
      for conv_id in range(stack_conv):
        with tf.variable_scope("stack_{0}".format(conv_id)):
          # create params and pick the correct path
          inp_c = self._get_C(x)
          w_depthwise = create_weight(
            "w_depth", [num_possible_inputs, filter_size * filter_size * inp_c])
          w_depthwise = w_depthwise[prev_cell, :]
          w_depthwise = tf.reshape(
            w_depthwise, [filter_size, filter_size, inp_c, 1])

          w_pointwise = create_weight(
            "w_point", [num_possible_inputs, inp_c * out_filters])
          w_pointwise = w_pointwise[prev_cell, :]
          w_pointwise = tf.reshape(w_pointwise, [1, 1, inp_c, out_filters])

          with tf.variable_scope("bn"):
            zero_init = tf.initializers.zeros(dtype=tf.float32)
            one_init = tf.initializers.ones(dtype=tf.float32)
            offset = create_weight(
              "offset", [num_possible_inputs, out_filters],
              initializer=zero_init)
            scale = create_weight(
              "scale", [num_possible_inputs, out_filters],
              initializer=one_init)
            offset = offset[prev_cell]
            scale = scale[prev_cell]

          # the computations
          x = tf.nn.relu(x)
          x = tf.nn.separable_conv2d(
            x,
            depthwise_filter=w_depthwise,
            pointwise_filter=w_pointwise,
            strides=[1, 1, 1, 1], padding="SAME",
            data_format=self.data_format)
          x, _, _ = tf.nn.fused_batch_norm(
            x, scale, offset, epsilon=1e-5, data_format=self.data_format,
            is_training=True)
    return x
Exemple #7
0
    def _pool_branch(self,
                     inputs,
                     is_training,
                     count,
                     avg_or_max,
                     start_idx=None):
        """
    Args:
      start_idx: where to start taking the output channels. if None, assuming
        fixed_arc mode
      count: how many output_channels to take.
    """

        if start_idx is None:
            assert self.fixed_arc is not None, "you screwed up!"

        if self.data_format == "NHWC":
            inp_c = inputs.get_shape()[3].value
        elif self.data_format == "NCHW":
            inp_c = inputs.get_shape()[1].value

        with tf.variable_scope("conv_1"):
            w = create_weight("w", [1, 1, inp_c, self.out_filters])
            x = tf.nn.conv2d(inputs,
                             w, [1, 1, 1, 1],
                             "SAME",
                             data_format=self.data_format)
            x = norm(x, is_training, data_format=self.data_format)
            x = tf.nn.elu(x)

        with tf.variable_scope("pool"):
            if self.data_format == "NHWC":
                actual_data_format = "channels_last"
            elif self.data_format == "NCHW":
                actual_data_format = "channels_first"

            if avg_or_max == "avg":
                x = tf.layers.average_pooling2d(x, [3, 3], [1, 1],
                                                "SAME",
                                                data_format=actual_data_format)
            elif avg_or_max == "max":
                x = tf.layers.max_pooling2d(x, [3, 3], [1, 1],
                                            "SAME",
                                            data_format=actual_data_format)
            else:
                raise ValueError("Unknown pool {}".format(avg_or_max))

            if start_idx is not None:
                if self.data_format == "NHWC":
                    x = x[:, :, :, start_idx:start_idx + count]
                elif self.data_format == "NCHW":
                    x = x[:, start_idx:start_idx + count, :, :]

        return x
Exemple #8
0
  def _enas_layer(self, layer_id, prev_layers, arc, out_filters):
    """
    Args:
      layer_id: current layer
      prev_layers: cache of previous layers. for skip connections
      start_idx: where to start looking at. technically, we can infer this
        from layer_id, but why bother...
    """

    assert len(prev_layers) == 2, "need exactly 2 inputs"
    layers = [prev_layers[0], prev_layers[1]]
    layers = self._maybe_calibrate_size(layers, out_filters, is_training=True)
    used = []
    for cell_id in range(self.num_cells):
      prev_layers = tf.stack(layers, axis=0)
      with tf.variable_scope("cell_{0}".format(cell_id)):
        with tf.variable_scope("x"):
          x_id = arc[4 * cell_id]
          x_op = arc[4 * cell_id + 1]
          x = prev_layers[x_id, :, :, :, :]
          x = self._enas_cell(x, cell_id, x_id, x_op, out_filters)
          x_used = tf.one_hot(x_id, depth=self.num_cells + 2, dtype=tf.int32)

        with tf.variable_scope("y"):
          y_id = arc[4 * cell_id + 2]
          y_op = arc[4 * cell_id + 3]
          y = prev_layers[y_id, :, :, :, :]
          y = self._enas_cell(y, cell_id, y_id, y_op, out_filters)
          y_used = tf.one_hot(y_id, depth=self.num_cells + 2, dtype=tf.int32)

        out = x + y
        used.extend([x_used, y_used])
        layers.append(out)

    used = tf.add_n(used)
    indices = tf.where(tf.equal(used, 0))
    indices = tf.to_int32(indices)
    indices = tf.reshape(indices, [-1])
    num_outs = tf.size(indices)
    out = tf.stack(layers, axis=0)
    out = tf.gather(out, indices, axis=0)

    inp = prev_layers[0]
    if self.data_format == "NHWC":
      N = tf.shape(inp)[0]
      H = tf.shape(inp)[1]
      W = tf.shape(inp)[2]
      C = tf.shape(inp)[3]
      out = tf.transpose(out, [1, 2, 3, 0, 4])
      out = tf.reshape(out, [N, H, W, num_outs * out_filters])
    elif self.data_format == "NCHW":
      N = tf.shape(inp)[0]
      C = tf.shape(inp)[1]
      H = tf.shape(inp)[2]
      W = tf.shape(inp)[3]
      out = tf.transpose(out, [1, 0, 2, 3, 4])
      out = tf.reshape(out, [N, num_outs * out_filters, H, W])
    else:
      raise ValueError("Unknown data_format '{0}'".format(self.data_format))

    with tf.variable_scope("final_conv"):
      w = create_weight("w", [self.num_cells + 2, out_filters * out_filters])
      w = tf.gather(w, indices, axis=0)
      w = tf.reshape(w, [1, 1, num_outs * out_filters, out_filters])
      out = tf.nn.relu(out)
      out = tf.nn.conv2d(out, w, strides=[1, 1, 1, 1], padding="SAME",
                         data_format=self.data_format)
      out = batch_norm(out, is_training=True, data_format=self.data_format)

    out = tf.reshape(out, tf.shape(prev_layers[0]))

    return out
Exemple #9
0
  def _fixed_layer(self, layer_id, prev_layers, arc, out_filters, stride,
                   is_training, normal_or_reduction_cell="normal"):
    """
    Args:
      prev_layers: cache of previous layers. for skip connections
      is_training: for batch_norm
    """

    assert len(prev_layers) == 2
    layers = [prev_layers[0], prev_layers[1]]
    layers = self._maybe_calibrate_size(layers, out_filters,
                                        is_training=is_training)

    with tf.variable_scope("layer_base"):
      x = layers[1]
      inp_c = self._get_C(x)
      w = create_weight("w", [1, 1, inp_c, out_filters])
      x = tf.nn.relu(x)
      x = tf.nn.conv2d(x, w, [1, 1, 1, 1], "SAME",
                       data_format=self.data_format)
      x = batch_norm(x, is_training, data_format=self.data_format)
      layers[1] = x

    used = np.zeros([self.num_cells + 2], dtype=np.int32)
    f_sizes = [3, 5]
    for cell_id in range(self.num_cells):
      with tf.variable_scope("cell_{}".format(cell_id)):
        x_id = arc[4 * cell_id]
        used[x_id] += 1
        x_op = arc[4 * cell_id + 1]
        x = layers[x_id]
        x_stride = stride if x_id in [0, 1] else 1
        with tf.variable_scope("x_conv"):
          if x_op in [0, 1]:
            f_size = f_sizes[x_op]
            x = self._fixed_conv(x, f_size, out_filters, x_stride, is_training)
          elif x_op in [2, 3]:
            inp_c = self._get_C(x)
            if x_op == 2:
              x = tf.layers.average_pooling2d(
                x, [3, 3], [x_stride, x_stride], "SAME",
                data_format=self.actual_data_format)
            else:
              x = tf.layers.max_pooling2d(
                x, [3, 3], [x_stride, x_stride], "SAME",
                data_format=self.actual_data_format)
            if inp_c != out_filters:
              w = create_weight("w", [1, 1, inp_c, out_filters])
              x = tf.nn.relu(x)
              x = tf.nn.conv2d(x, w, [1, 1, 1, 1], "SAME",
                               data_format=self.data_format)
              x = batch_norm(x, is_training, data_format=self.data_format)
          else:
            inp_c = self._get_C(x)
            if x_stride > 1:
              assert x_stride == 2
              x = self._factorized_reduction(x, out_filters, 2, is_training)
            if inp_c != out_filters:
              w = create_weight("w", [1, 1, inp_c, out_filters])
              x = tf.nn.relu(x)
              x = tf.nn.conv2d(x, w, [1, 1, 1, 1], "SAME", data_format=self.data_format)
              x = batch_norm(x, is_training, data_format=self.data_format)
          if (x_op in [0, 1, 2, 3] and
              self.drop_path_keep_prob is not None and
              is_training):
            x = self._apply_drop_path(x, layer_id)

        y_id = arc[4 * cell_id + 2]
        used[y_id] += 1
        y_op = arc[4 * cell_id + 3]
        y = layers[y_id]
        y_stride = stride if y_id in [0, 1] else 1
        with tf.variable_scope("y_conv"):
          if y_op in [0, 1]:
            f_size = f_sizes[y_op]
            y = self._fixed_conv(y, f_size, out_filters, y_stride, is_training)
          elif y_op in [2, 3]:
            inp_c = self._get_C(y)
            if y_op == 2:
              y = tf.layers.average_pooling2d(
                y, [3, 3], [y_stride, y_stride], "SAME",
                data_format=self.actual_data_format)
            else:
              y = tf.layers.max_pooling2d(
                y, [3, 3], [y_stride, y_stride], "SAME",
                data_format=self.actual_data_format)
            if inp_c != out_filters:
              w = create_weight("w", [1, 1, inp_c, out_filters])
              y = tf.nn.relu(y)
              y = tf.nn.conv2d(y, w, [1, 1, 1, 1], "SAME",
                               data_format=self.data_format)
              y = batch_norm(y, is_training, data_format=self.data_format)
          else:
            inp_c = self._get_C(y)
            if y_stride > 1:
              assert y_stride == 2
              y = self._factorized_reduction(y, out_filters, 2, is_training)
            if inp_c != out_filters:
              w = create_weight("w", [1, 1, inp_c, out_filters])
              y = tf.nn.relu(y)
              y = tf.nn.conv2d(y, w, [1, 1, 1, 1], "SAME",
                               data_format=self.data_format)
              y = batch_norm(y, is_training, data_format=self.data_format)

          if (y_op in [0, 1, 2, 3] and
              self.drop_path_keep_prob is not None and
              is_training):
            y = self._apply_drop_path(y, layer_id)

        out = x + y
        layers.append(out)
    out = self._fixed_combine(layers, used, out_filters, is_training,
                              normal_or_reduction_cell)

    return out
Exemple #10
0
  def _model(self, images, is_training, reuse=False):
    """Compute the logits given the images."""

    if self.fixed_arc is None:
      is_training = True

    with tf.variable_scope(self.name, reuse=reuse):
      # the first two inputs
      with tf.variable_scope("stem_conv"):
        w = create_weight("w", [3, 3, 3, self.out_filters * 3])
        x = tf.nn.conv2d(
          images, w, [1, 1, 1, 1], "SAME", data_format=self.data_format)
        x = batch_norm(x, is_training, data_format=self.data_format)
      if self.data_format == "NHCW":
        split_axis = 3
      elif self.data_format == "NCHW":
        split_axis = 1
      else:
        raise ValueError("Unknown data_format '{0}'".format(self.data_format))
      layers = [x, x]

      # building layers in the micro space
      out_filters = self.out_filters
      for layer_id in range(self.num_layers + 2):
        with tf.variable_scope("layer_{0}".format(layer_id)):
          if layer_id not in self.pool_layers:
            if self.fixed_arc is None:
              x = self._enas_layer(
                layer_id, layers, self.normal_arc, out_filters)
            else:
              x = self._fixed_layer(
                layer_id, layers, self.normal_arc, out_filters, 1, is_training,
                normal_or_reduction_cell="normal")
          else:
            out_filters *= 2
            if self.fixed_arc is None:
              x = self._factorized_reduction(x, out_filters, 2, is_training)
              layers = [layers[-1], x]
              x = self._enas_layer(
                layer_id, layers, self.reduce_arc, out_filters)
            else:
              x = self._fixed_layer(
                layer_id, layers, self.reduce_arc, out_filters, 2, is_training,
                normal_or_reduction_cell="reduction")
          print("Layer {0:>2d}: {1}".format(layer_id, x))
          layers = [layers[-1], x]

        # auxiliary heads
        self.num_aux_vars = 0
        if (self.use_aux_heads and
            layer_id in self.aux_head_indices
            and is_training):
          print("Using aux_head at layer {0}".format(layer_id))
          with tf.variable_scope("aux_head"):
            aux_logits = tf.nn.relu(x)
            aux_logits = tf.layers.average_pooling2d(
              aux_logits, [5, 5], [3, 3], "VALID",
              data_format=self.actual_data_format)
            with tf.variable_scope("proj"):
              inp_c = self._get_C(aux_logits)
              w = create_weight("w", [1, 1, inp_c, 128])
              aux_logits = tf.nn.conv2d(aux_logits, w, [1, 1, 1, 1], "SAME",
                                        data_format=self.data_format)
              aux_logits = batch_norm(aux_logits, is_training=True,
                                      data_format=self.data_format)
              aux_logits = tf.nn.relu(aux_logits)

            with tf.variable_scope("avg_pool"):
              inp_c = self._get_C(aux_logits)
              hw = self._get_HW(aux_logits)
              w = create_weight("w", [hw, hw, inp_c, 768])
              aux_logits = tf.nn.conv2d(aux_logits, w, [1, 1, 1, 1], "SAME",
                                        data_format=self.data_format)
              aux_logits = batch_norm(aux_logits, is_training=True,
                                      data_format=self.data_format)
              aux_logits = tf.nn.relu(aux_logits)

            with tf.variable_scope("fc"):
              aux_logits = global_avg_pool(aux_logits,
                                           data_format=self.data_format)
              inp_c = aux_logits.get_shape()[1].value
              w = create_weight("w", [inp_c, 10])
              aux_logits = tf.matmul(aux_logits, w)
              self.aux_logits = aux_logits

          aux_head_variables = [
            var for var in tf.trainable_variables() if (
              var.name.startswith(self.name) and "aux_head" in var.name)]
          self.num_aux_vars = count_model_params(aux_head_variables)
          print("Aux head uses {0} params".format(self.num_aux_vars))

      x = tf.nn.relu(x)
      x = global_avg_pool(x, data_format=self.data_format)
      if is_training and self.keep_prob is not None and self.keep_prob < 1.0:
        x = tf.nn.dropout(x, self.keep_prob)
      with tf.variable_scope("fc"):
        inp_c = self._get_C(x)
        w = create_weight("w", [inp_c, 10])
        x = tf.matmul(x, w)
    return x
Exemple #11
0
def fully_connected(x, out_size, name="fc", seed=None):
    in_size = x.get_shape()[-1].value
    with tf.variable_scope(name):
        w = create_weight("w", [in_size, out_size], seed=seed)
    x = tf.matmul(x, w)
    return x
Exemple #12
0
    def _conv_branch(self,
                     inputs,
                     filter_size,
                     is_training,
                     count,
                     out_filters,
                     ch_mul=1,
                     start_idx=None,
                     separable=False):
        """
    Args:
      start_idx: where to start taking the output channels. if None, assuming
        fixed_arc mode
      count: how many output_channels to take.
    """

        if start_idx is None:
            assert self.fixed_arc is not None, "you screwed up!"

        if self.data_format == "NHWC":
            inp_c = inputs.get_shape()[3].value
        elif self.data_format == "NCHW":
            inp_c = inputs.get_shape()[1].value

        with tf.variable_scope("inp_conv_1"):
            w = create_weight("w", [1, 1, inp_c, out_filters])
            x = tf.nn.conv2d(inputs,
                             w, [1, 1, 1, 1],
                             "SAME",
                             data_format=self.data_format)
            x = norm(x, is_training, data_format=self.data_format)
            x = tf.nn.elu(x)

        with tf.variable_scope("out_conv_{}".format(filter_size)):
            if start_idx is None:
                if separable:
                    w_depth = create_weight("w_depth", [
                        self.filter_size, self.filter_size, out_filters, ch_mul
                    ])
                    w_point = create_weight(
                        "w_point", [1, 1, out_filters * ch_mul, count])
                    x = tf.nn.separable_conv2d(x,
                                               w_depth,
                                               w_point,
                                               strides=[1, 1, 1, 1],
                                               padding="SAME",
                                               data_format=self.data_format)
                    x = norm(x, is_training, data_format=self.data_format)
                else:
                    w = create_weight("w",
                                      [filter_size, filter_size, inp_c, count])
                    x = tf.nn.conv2d(x,
                                     w, [1, 1, 1, 1],
                                     "SAME",
                                     data_format=self.data_format)
                    x = norm(x, is_training, data_format=self.data_format)
            else:
                print(
                    'TODO(ahundt) batch_norm_with_mask is definitely called... make a group norm version!'
                )
                if separable:
                    w_depth = create_weight(
                        "w_depth",
                        [filter_size, filter_size, out_filters, ch_mul])
                    w_point = create_weight(
                        "w_point", [out_filters, out_filters * ch_mul])
                    w_point = w_point[start_idx:start_idx + count, :]
                    w_point = tf.transpose(w_point, [1, 0])
                    w_point = tf.reshape(w_point,
                                         [1, 1, out_filters * ch_mul, count])

                    x = tf.nn.separable_conv2d(x,
                                               w_depth,
                                               w_point,
                                               strides=[1, 1, 1, 1],
                                               padding="SAME",
                                               data_format=self.data_format)
                    mask = tf.range(0, out_filters, dtype=tf.int32)
                    mask = tf.logical_and(start_idx <= mask,
                                          mask < start_idx + count)
                    x = batch_norm_with_mask(x,
                                             is_training,
                                             mask,
                                             out_filters,
                                             data_format=self.data_format)
                else:
                    w = create_weight(
                        "w",
                        [filter_size, filter_size, out_filters, out_filters])
                    w = tf.transpose(w, [3, 0, 1, 2])
                    w = w[start_idx:start_idx + count, :, :, :]
                    w = tf.transpose(w, [1, 2, 3, 0])
                    x = tf.nn.conv2d(x,
                                     w, [1, 1, 1, 1],
                                     "SAME",
                                     data_format=self.data_format)
                    mask = tf.range(0, out_filters, dtype=tf.int32)
                    mask = tf.logical_and(start_idx <= mask,
                                          mask < start_idx + count)
                    x = batch_norm_with_mask(x,
                                             is_training,
                                             mask,
                                             out_filters,
                                             data_format=self.data_format)
            x = tf.nn.elu(x)
        return x
Exemple #13
0
    def _fixed_layer(self, layer_id, prev_layers, start_idx, out_filters,
                     is_training):
        """
    Args:
      layer_id: current layer
      prev_layers: cache of previous layers. for skip connections
      start_idx: where to start looking at. technically, we can infer this
        from layer_id, but why bother...
      is_training: for batch_norm
    """

        inputs = prev_layers[-1]
        if self.whole_channels:
            if self.data_format == "NHWC":
                inp_c = inputs.get_shape()[3].value
            elif self.data_format == "NCHW":
                inp_c = inputs.get_shape()[1].value

            count = self.sample_arc[start_idx]
            if count in [0, 1, 2, 3]:
                size = [3, 3, 5, 5]
                filter_size = size[count]
                with tf.variable_scope("conv_1x1"):
                    w = create_weight("w", [1, 1, inp_c, out_filters])
                    out = tf.nn.elu(inputs)
                    out = tf.nn.conv2d(out,
                                       w, [1, 1, 1, 1],
                                       "SAME",
                                       data_format=self.data_format)
                    out = norm(out, is_training, data_format=self.data_format)

                with tf.variable_scope("conv_{0}x{0}".format(filter_size)):
                    w = create_weight(
                        "w",
                        [filter_size, filter_size, out_filters, out_filters])
                    out = tf.nn.elu(out)
                    out = tf.nn.conv2d(out,
                                       w, [1, 1, 1, 1],
                                       "SAME",
                                       data_format=self.data_format)
                    out = norm(out, is_training, data_format=self.data_format)
            elif count == 4:
                pass
            elif count == 5:
                pass
            else:
                raise ValueError(
                    "Unknown operation number '{0}'".format(count))
        else:
            count = (
                self.sample_arc[start_idx:start_idx + 2 * self.num_branches] *
                self.out_filters_scale)
            branches = []
            total_out_channels = 0
            with tf.variable_scope("branch_0"):
                total_out_channels += count[1]
                branches.append(
                    self._conv_branch(inputs, 3, is_training, count[1]))
            with tf.variable_scope("branch_1"):
                total_out_channels += count[3]
                branches.append(
                    self._conv_branch(inputs,
                                      3,
                                      is_training,
                                      count[3],
                                      separable=True))
            with tf.variable_scope("branch_2"):
                total_out_channels += count[5]
                branches.append(
                    self._conv_branch(inputs, 5, is_training, count[5]))
            with tf.variable_scope("branch_3"):
                total_out_channels += count[7]
                branches.append(
                    self._conv_branch(inputs,
                                      5,
                                      is_training,
                                      count[7],
                                      separable=True))
            if self.num_branches >= 5:
                with tf.variable_scope("branch_4"):
                    total_out_channels += count[9]
                    branches.append(
                        self._pool_branch(inputs, is_training, count[9],
                                          "avg"))
            if self.num_branches >= 6:
                with tf.variable_scope("branch_5"):
                    total_out_channels += count[11]
                    branches.append(
                        self._pool_branch(inputs, is_training, count[11],
                                          "max"))

            with tf.variable_scope("final_conv"):
                w = create_weight("w", [1, 1, total_out_channels, out_filters])
                if self.data_format == "NHWC":
                    branches = tf.concat(branches, axis=3)
                elif self.data_format == "NCHW":
                    branches = tf.concat(branches, axis=1)
                out = tf.nn.elu(branches)
                out = tf.nn.conv2d(out,
                                   w, [1, 1, 1, 1],
                                   "SAME",
                                   data_format=self.data_format)
                out = norm(out, is_training, data_format=self.data_format)

        if layer_id > 0:
            if self.whole_channels:
                skip_start = start_idx + 1
            else:
                skip_start = start_idx + 2 * self.num_branches
            skip = self.sample_arc[skip_start:skip_start + layer_id]
            total_skip_channels = np.sum(skip) + 1

            res_layers = []
            for i in range(layer_id):
                if skip[i] == 1:
                    res_layers.append(prev_layers[i])
            prev = res_layers + [out]

            if self.data_format == "NHWC":
                prev = tf.concat(prev, axis=3)
            elif self.data_format == "NCHW":
                prev = tf.concat(prev, axis=1)

            out = prev
            with tf.variable_scope("skip"):
                w = create_weight(
                    "w",
                    [1, 1, total_skip_channels * out_filters, out_filters])
                out = tf.nn.elu(out)
                out = tf.nn.conv2d(out,
                                   w, [1, 1, 1, 1],
                                   "SAME",
                                   data_format=self.data_format)
                out = norm(out, is_training, data_format=self.data_format)

        return out
Exemple #14
0
    def _enas_layer(self, layer_id, prev_layers, start_idx, out_filters,
                    is_training):
        """
    Args:
      layer_id: current layer
      prev_layers: cache of previous layers. for skip connections
      start_idx: where to start looking at. technically, we can infer this
        from layer_id, but why bother...
      is_training: for batch_norm
    """

        inputs = prev_layers[-1]
        if self.whole_channels:
            if self.data_format == "NHWC":
                inp_h = inputs.get_shape()[1].value
                inp_w = inputs.get_shape()[2].value
                inp_c = inputs.get_shape()[3].value
            elif self.data_format == "NCHW":
                inp_c = inputs.get_shape()[1].value
                inp_h = inputs.get_shape()[2].value
                inp_w = inputs.get_shape()[3].value

            count = self.sample_arc[start_idx]
            branches = {}
            with tf.variable_scope("branch_0"):
                y = self._conv_branch(inputs,
                                      3,
                                      is_training,
                                      out_filters,
                                      out_filters,
                                      start_idx=0)
                branches[tf.equal(count, 0)] = lambda: y
            with tf.variable_scope("branch_1"):
                y = self._conv_branch(inputs,
                                      3,
                                      is_training,
                                      out_filters,
                                      out_filters,
                                      start_idx=0,
                                      separable=True)
                branches[tf.equal(count, 1)] = lambda: y
            with tf.variable_scope("branch_2"):
                y = self._conv_branch(inputs,
                                      5,
                                      is_training,
                                      out_filters,
                                      out_filters,
                                      start_idx=0)
                branches[tf.equal(count, 2)] = lambda: y
            with tf.variable_scope("branch_3"):
                y = self._conv_branch(inputs,
                                      5,
                                      is_training,
                                      out_filters,
                                      out_filters,
                                      start_idx=0,
                                      separable=True)
                branches[tf.equal(count, 3)] = lambda: y
            if self.num_branches >= 5:
                with tf.variable_scope("branch_4"):
                    y = self._pool_branch(inputs,
                                          is_training,
                                          out_filters,
                                          "avg",
                                          start_idx=0)
                branches[tf.equal(count, 4)] = lambda: y
            if self.num_branches >= 6:
                with tf.variable_scope("branch_5"):
                    y = self._pool_branch(inputs,
                                          is_training,
                                          out_filters,
                                          "max",
                                          start_idx=0)
                branches[tf.equal(count, 5)] = lambda: y

            if self.data_format == "NHWC":
                out_shape = [self.batch_size, inp_h, inp_w, out_filters]
            elif self.data_format == "NCHW":
                out_shape = [self.batch_size, out_filters, inp_h, inp_w]

            out = tf.case(
                branches,
                default=lambda: tf.constant(0, tf.float32, shape=out_shape),
                exclusive=True)
        else:
            count = self.sample_arc[start_idx:start_idx +
                                    2 * self.num_branches]
            branches = []
            with tf.variable_scope("branch_0"):
                branches.append(
                    self._conv_branch(inputs,
                                      3,
                                      is_training,
                                      count[1],
                                      out_filters,
                                      start_idx=count[0]))
            with tf.variable_scope("branch_1"):
                branches.append(
                    self._conv_branch(inputs,
                                      3,
                                      is_training,
                                      count[3],
                                      out_filters,
                                      start_idx=count[2],
                                      separable=True))
            with tf.variable_scope("branch_2"):
                branches.append(
                    self._conv_branch(inputs,
                                      5,
                                      is_training,
                                      count[5],
                                      out_filters,
                                      start_idx=count[4]))
            with tf.variable_scope("branch_3"):
                branches.append(
                    self._conv_branch(inputs,
                                      5,
                                      is_training,
                                      count[7],
                                      out_filters,
                                      start_idx=count[6],
                                      separable=True))
            if self.num_branches >= 5:
                with tf.variable_scope("branch_4"):
                    branches.append(
                        self._pool_branch(inputs,
                                          is_training,
                                          count[9],
                                          "avg",
                                          start_idx=count[8]))
            if self.num_branches >= 6:
                with tf.variable_scope("branch_5"):
                    branches.append(
                        self._pool_branch(inputs,
                                          is_training,
                                          count[11],
                                          "max",
                                          start_idx=count[10]))

            with tf.variable_scope("final_conv"):
                w = create_weight(
                    "w", [self.num_branches * out_filters, out_filters])
                w_mask = tf.constant(
                    [False] * (self.num_branches * out_filters), tf.bool)
                new_range = tf.range(0,
                                     self.num_branches * out_filters,
                                     dtype=tf.int32)
                for i in range(self.num_branches):
                    start = out_filters * i + count[2 * i]
                    new_mask = tf.logical_and(
                        start <= new_range,
                        new_range < start + count[2 * i + 1])
                    w_mask = tf.logical_or(w_mask, new_mask)
                w = tf.boolean_mask(w, w_mask)
                w = tf.reshape(w, [1, 1, -1, out_filters])

                inp = prev_layers[-1]
                if self.data_format == "NHWC":
                    branches = tf.concat(branches, axis=3)
                elif self.data_format == "NCHW":
                    branches = tf.concat(branches, axis=1)
                    N = tf.shape(inp)[0]
                    H = inp.get_shape()[2].value
                    W = inp.get_shape()[3].value
                    branches = tf.reshape(branches, [N, -1, H, W])
                out = tf.nn.conv2d(branches,
                                   w, [1, 1, 1, 1],
                                   "SAME",
                                   data_format=self.data_format)
                out = norm(out, is_training, data_format=self.data_format)
                out = tf.nn.elu(out)

        if layer_id > 0:
            if self.whole_channels:
                skip_start = start_idx + 1
            else:
                skip_start = start_idx + 2 * self.num_branches
            skip = self.sample_arc[skip_start:skip_start + layer_id]
            with tf.variable_scope("skip"):
                res_layers = []
                for i in range(layer_id):
                    res_layers.append(
                        tf.cond(tf.equal(skip[i], 1), lambda: prev_layers[i],
                                lambda: tf.zeros_like(prev_layers[i])))
                res_layers.append(out)
                out = tf.add_n(res_layers)
                out = norm(out, is_training, data_format=self.data_format)

        return out