Exemple #1
0
def test_generate_captions():
	'''
	Wherein we test test_mod.generate_captions. Since you may
	use pre-computed weights from any source only print the 
	generated sentence to stdout and check that it is nonempty
	'''

	encoded_img=ei.encodings(ei.model_gen(),test_img)
	caption=generate_captions(sd,model,encoded_img,beam_size=3)
	def report():
		print('The model generated the caption: '+caption)
	atexit.register(report)
	assert(len(caption)>0)
Exemple #2
0
def test_encodings():
	'''
	We test encode_image.encodings(), which is just a wrapper for VGG16.
	This proceeds in the same fashion as in test_vgg16(). The truth value for
	the encodings differ slightly, since the encodings() wrapper uses another
	preprocessing routine defined in imagenet_utils.
	'''
	model=model_gen()
	preds=encodings(model=model,path=os.path.join(image_folder,test_image))

	encoding_pred_slice=np.array([0,0,0,0,6.943786,0,0,0,0,0.495808,0,0,1.2099614,0,0,1.9550853,0,2.5830698,0,0,1.5520213,6.7467823,0.30691597,0.6208435,0,3.8465405,3.7862554,2.3970299,0,0,3.5254822,2.7294598,0,0,2.7226853,0,3.2338202,2.3976898,0,6.3592043,0,2.7090664,0,0,10.004378,0,0,0,3.0425727,2.0538316,1.8156273,0.15581878,2.3381875,0.88823074,0,0,0,0,0,0,0.036334604,0,0,0,3.5556676,0.29299664,0,0,0,0,0,0,1.0033253,0,0,0,0.96017045,0,5.8062425,0,4.4312,0,0,0,0,0,0,0,2.7901797,0.5715834,0.76234996,1.7294867,1.2244358,0,0,0,0,0,0,0,])
	assert(preds.shape==(4096,))
	assert(len(preds[preds!=0])==1351)
	np.testing.assert_allclose(preds[:100],encoding_pred_slice,err_msg='encoding wrapper yielded wrong encoding for test image!')
Exemple #3
0
def text(img):
	t1= time.time()
	encode = ei.model_gen()
	weight = 'Output/Weights.h5'
	sd = SceneDesc.scenedesc()
	model = sd.create_model(ret_model = True)
	model.load_weights(weight)
	image_path = img
	encoded_images = ei.encodings(encode, image_path)

	image_captions = tm.generate_captions(sd, model, encoded_images, beam_size=3)
	engine = pyttsx.init()
	print (image_captions)
	engine.say(	str(image_captions))
	engine.runAndWait()
def text(img):
    t1 = time.time()
    encode = ei.model_gen()
    weight = 'Output/Weights.h5'
    sd = SceneDesc.scenedesc()
    model = sd.create_model(ret_model=True)
    model.load_weights(weight)
    image_path = img
    encoded_images = ei.encodings(encode, image_path)

    image_captions = tm.generate_captions(sd,
                                          model,
                                          encoded_images,
                                          beam_size=3)
    engine = pyttsx.init()
    print '\nCaption Generated for the above Image is=\n', image_captions
Exemple #5
0
def text(caption):
    encode = ei.model_gen()
    weight = 'Output/Weights.h5'
    decoder = decode_caption.decoder()
    model = decoder.model_gen(ret_model=True)
    model.load_weights(weight)
    bleu_sum = 0.0
    count = 0
    cc = SmoothingFunction()

    test_imgs_id = open("Flickr8K_Text/Flickr_8k.testImages.txt").read().split(
        '\n')[:-1]
    for img_id in test_imgs_id:
        image_path = "Flickr8K_Data/" + img_id

        encoded_images = ei.encodings(encode, image_path)
        image_captions = generate_captions(decoder,
                                           model,
                                           encoded_images,
                                           beam_size=3)
        print(image_captions)

        # bleuscore-4
        bleus = []
        image_captions = image_captions.split()

        for true_sentense in caption[img_id]:
            true_sentense = true_sentense.split()
            try:
                bleu = sentence_bleu([true_sentense],
                                     image_captions,
                                     weights=(0.25, 0.25, 0.25, 0.25),
                                     smoothing_function=cc.method4)
                bleus.append(bleu)
            except:
                pass
        if len(bleus) > 0:
            print(np.mean(bleus))
            bleu_sum += np.mean(bleus)
            count += 1

    print(bleu_sum / count)