def main():
    """business logic for when running this module as the primary one!"""
    args = get_cmd_args()
    run_name = args.run_name
    run_dir = args.run_dir
    picinfo_fname = '../data/pic_info/pic_info_' + run_name + '.json'
    pic_info = read_data_from_json(picinfo_fname)
    coords = get_coordinates(pic_info)
    # runs_root_dir = "/net/scratch3/xiaocanli/reconnection/mime400/"
    # run_names = ["mime400_beta002_bg00",
    #              "mime400_beta002_bg02",
    #              "mime400_beta002_bg04",
    #              "mime400_beta002_bg08"]
    runs_root_dir = "/net/scratch3/xiaocanli/reconnection/frequent_dump/"
    run_names = ["mime25_beta002_guide00_frequent_dump",
                 "mime25_beta002_guide02_frequent_dump",
                 "mime25_beta002_guide05_frequent_dump",
                 "mime25_beta002_guide10_frequent_dump"]
    if args.multi_runs:
        ncores = multiprocessing.cpu_count()
        ncores = 4
        Parallel(n_jobs=ncores)(delayed(process_input)(runs_root_dir,
                                                       run_name, coords)
                                for run_name in run_names)
    else:
        calc_exb(run_dir, run_name, 10, coords)
Exemple #2
0
def main():
    """business logic for when running this module as the primary one!"""
    args = get_cmd_args()
    run_name = args.run_name
    run_dir = args.run_dir
    picinfo_fname = '../data/pic_info/pic_info_' + run_name + '.json'
    pic_info = read_data_from_json(picinfo_fname)
    coords = get_coordinates(pic_info)
    # runs_root_dir = "/net/scratch3/xiaocanli/reconnection/mime400/"
    # run_names = ["mime400_beta002_bg00",
    #              "mime400_beta002_bg02",
    #              "mime400_beta002_bg04",
    #              "mime400_beta002_bg08"]
    runs_root_dir = "/net/scratch3/xiaocanli/reconnection/frequent_dump/"
    run_names = [
        "mime25_beta002_guide00_frequent_dump",
        "mime25_beta002_guide02_frequent_dump",
        "mime25_beta002_guide05_frequent_dump",
        "mime25_beta002_guide10_frequent_dump"
    ]
    if args.multi_runs:
        ncores = multiprocessing.cpu_count()
        ncores = 4
        Parallel(n_jobs=ncores)(
            delayed(process_input)(runs_root_dir, run_name, coords)
            for run_name in run_names)
    else:
        calc_exb(run_dir, run_name, 10, coords)
Exemple #3
0
def process_input(runs_root_dir, run_name, coords):
    """process one PIC run"""
    picinfo_fname = '../data/pic_info/pic_info_' + run_name + '.json'
    pic_info = read_data_from_json(picinfo_fname)
    tframes = range(pic_info.ntf)
    run_dir = runs_root_dir + run_name + '/'
    for tframe in tframes:
        calc_exb(run_dir, run_name, tframe, coords)
def process_input(runs_root_dir, run_name, coords):
    """process one PIC run"""
    picinfo_fname = '../data/pic_info/pic_info_' + run_name + '.json'
    pic_info = read_data_from_json(picinfo_fname)
    tframes = range(pic_info.ntf)
    run_dir = runs_root_dir + run_name + '/'
    for tframe in tframes:
        calc_exb(run_dir, run_name, tframe, coords)
 def processInput(run_efield):
     run_name = run_efield["run_name"]
     picinfo_fname = '../data/pic_info/pic_info_' + run_name + '.json'
     pic_info = read_data_from_json(picinfo_fname)
     coords = get_coordinates(pic_info)
     tframes = range(pic_info.ntf)
     efield_name = run_efield["efield_name"]
     print("Run name and electric field name: %s %s" % (run_name, efield_name))
     run_dir = runs_root_dir + run_name + '/'
     for tframe in tframes:
         # smooth_interp_emf(run_dir, pic_info, efield_name, tframe, coords)
         smooth_emf(run_dir, pic_info, efield_name, tframe, coords)
Exemple #6
0
 def processInput(run_efield):
     run_name = run_efield["run_name"]
     picinfo_fname = '../data/pic_info/pic_info_' + run_name + '.json'
     pic_info = read_data_from_json(picinfo_fname)
     coords = get_coordinates(pic_info)
     tframes = range(pic_info.ntf)
     efield_name = run_efield["efield_name"]
     print("Run name and electric field name: %s %s" %
           (run_name, efield_name))
     run_dir = runs_root_dir + run_name + '/'
     for tframe in tframes:
         # smooth_interp_emf(run_dir, pic_info, efield_name, tframe, coords)
         smooth_emf(run_dir, pic_info, efield_name, tframe, coords)
def calc_exb(run_dir, run_name, tframe, coords):
    """Calculate ExB drift velocity

    Args:
        run_dir: PIC run directory
        run_name: PIC run name
        trame: time frame
        coords: coordinates for different fields
    """
    picinfo_fname = '../data/pic_info/pic_info_' + run_name + '.json'
    pic_info = read_data_from_json(picinfo_fname)
    nx = pic_info.nx
    nz = pic_info.nz
    kwargs = {"current_time": tframe, "xl": 0, "xr": pic_info.lx_di,
              "zb": -0.5 * pic_info.lz_di, "zt": 0.5 * pic_info.lz_di}
    size_one_frame = pic_info.nx * pic_info.nz * 4
    sigma = 3
    fname = run_dir + "data/bx.gda"
    _, _, bx = read_2d_fields(pic_info, fname, **kwargs)
    f = MultilinearInterpolator(coords["smin_ez_bx"],
                                coords["smax_ez_bx"],
                                coords["orders"],
                                dtype=np.float32)
    f.set_values(np.atleast_2d(np.transpose(bx).flatten()))
    bx = np.transpose(f(coords["coord"]).reshape((nx, nz)))

    fname = run_dir + "data/by.gda"
    _, _, by = read_2d_fields(pic_info, fname, **kwargs)
    f = MultilinearInterpolator(coords["smin_by"],
                                coords["smax_by"],
                                coords["orders"],
                                dtype=np.float32)
    f.set_values(np.atleast_2d(np.transpose(by).flatten()))
    by = np.transpose(f(coords["coord"]).reshape((nx, nz)))

    fname = run_dir + "data/bz.gda"
    _, _, bz = read_2d_fields(pic_info, fname, **kwargs)
    f = MultilinearInterpolator(coords["smin_ex_bz"],
                                coords["smax_ex_bz"],
                                coords["orders"],
                                dtype=np.float32)
    f.set_values(np.atleast_2d(np.transpose(bz).flatten()))
    bz = np.transpose(f(coords["coord"]).reshape((nx, nz)))

    fname = run_dir + "data/ex.gda"
    _, _, ex = read_2d_fields(pic_info, fname, **kwargs)
    ex = gaussian_filter(ex, sigma)
    f = MultilinearInterpolator(coords["smin_ex_bz"],
                                coords["smax_ex_bz"],
                                coords["orders"],
                                dtype=np.float32)
    f.set_values(np.atleast_2d(np.transpose(ex).flatten()))
    ex = np.transpose(f(coords["coord"]).reshape((nx, nz)))

    fname = run_dir + "data/ey.gda"
    _, _, ey = read_2d_fields(pic_info, fname, **kwargs)
    ey = gaussian_filter(ey, sigma)
    f = MultilinearInterpolator(coords["smin_h"],
                                coords["smax_h"],
                                coords["orders"],
                                dtype=np.float32)
    f.set_values(np.atleast_2d(np.transpose(ey).flatten()))
    ey = np.transpose(f(coords["coord"]).reshape((nx, nz)))

    fname = run_dir + "data/ez.gda"
    _, _, ez = read_2d_fields(pic_info, fname, **kwargs)
    ez = gaussian_filter(ez, sigma)
    f = MultilinearInterpolator(coords["smin_ez_bx"],
                                coords["smax_ez_bx"],
                                coords["orders"],
                                dtype=np.float32)
    f.set_values(np.atleast_2d(np.transpose(ez).flatten()))
    ez = np.transpose(f(coords["coord"]).reshape((nx, nz)))

    ib2 = 1.0 / (bx**2 + by**2 + bz**2)
    exb_x = (ey * bz - ez * by) * ib2
    exb_y = (ez * bx - ex * bz) * ib2
    exb_z = (ex * by - ey * bx) * ib2

    fname = run_dir + "data/exb_x.gda"
    with open(fname, 'a+') as f:
        offset = size_one_frame * tframe
        f.seek(offset, os.SEEK_SET)
        exb_x.tofile(f)

    fname = run_dir + "data/exb_y.gda"
    with open(fname, 'a+') as f:
        offset = size_one_frame * tframe
        f.seek(offset, os.SEEK_SET)
        exb_y.tofile(f)

    fname = run_dir + "data/exb_z.gda"
    with open(fname, 'a+') as f:
        offset = size_one_frame * tframe
        f.seek(offset, os.SEEK_SET)
        exb_z.tofile(f)
    fig_dir = '../img/img_power_spectrum_du/' + run_name + '/'
    mkdir_p(fig_dir)
    fname = fig_dir + '/ps_comp_' + species + str(ct).zfill(3) + '.jpg'
    fig.savefig(fname, dpi=200)

    plt.close()
    # plt.show()


if __name__ == "__main__":
    # base_dir = '/net/scratch3/xiaocanli/2D-90-Mach4-sheet4-multi/'
    # run_name = '2D-90-Mach4-sheet4-multi'
    base_dir = '/net/scratch2/guofan/for_Senbei/2D-90-Mach4-sheet6-2/'
    run_name = '2D-90-Mach4-sheet6-2'
    picinfo_fname = '../data/pic_info/pic_info_' + run_name + '.json'
    pic_info = read_data_from_json(picinfo_fname)
    ct = pic_info.ntf - 2
    # ct = 200
    cts = range(10, pic_info.ntf - 1)

    xmin, xmax = 0, pic_info.lx_di
    xmin, xmax = 0, 105
    zmin, zmax = -0.5 * pic_info.lz_di, 0.5 * pic_info.lz_di
    # kwargs = {"current_time":ct, "xl":xmin, "xr":xmax, "zb":zmin, "zt":zmax}
    # fname = base_dir + 'data1/vex.gda'
    # x, z, vel = read_2d_fields(pic_info, fname, **kwargs) 
    kwargs = {
        "current_time": 0,
        "xl": xmin,
        "xr": xmax,
        "zb": zmin,
def plot_energy_conversion_fraction():
    """Plot energy evolution for multiple runs.
    """
    dir = '../data/pic_info/'
    if not os.path.isdir('../img/'):
        os.makedirs('../img/')
    odir = '../img/ene_evolution/'
    if not os.path.isdir(odir):
        os.makedirs(odir)
    fnames = list_pic_info_dir(dir)
    print fnames
    # run_id = [2, 5, 1, 6, 7, 8, 0, 4]
    run_id = [2, 8, 1, 9, 10, 12, 0, 7]
    nrun = len(run_id)
    ene_fraction = np.zeros(nrun)
    dke_dki = np.zeros(nrun)
    irun = 0
    i = 0
    for fname in fnames:
        print i, fname
        i += 1
    for i in run_id:
        fname = fnames[i]
        print fname
        rname = fname.replace(".json", ".eps")
        oname = rname.replace("pic_info", "enes")
        oname = odir + oname
        fname = dir + fname
        pic_info = read_data_from_json(fname)
        tenergy = pic_info.tenergy
        ene_magnetic = pic_info.ene_magnetic
        kene_e = pic_info.kene_e
        kene_i = pic_info.kene_i
        dke = kene_e[-1] - kene_e[0]
        dki = kene_i[-1] - kene_i[0]
        enorm = ene_magnetic[0]
        ene_fraction[irun] = 1.0 - ene_magnetic[-1] / enorm
        dke_dki[irun] = dke / dki
        irun += 1
    x = np.arange(8)
    fig = plt.figure(figsize=[7, 5])
    xs, ys = 0.16, 0.13
    w1, h1 = 0.7, 0.8
    ax = fig.add_axes([xs, ys, w1, h1])
    ax.plot(
        x,
        ene_fraction,
        color='r',
        marker='o',
        markersize=10,
        linestyle='',
        markeredgecolor='r')
    labels = [r'R6', r'R1', r'R4', r'R2', r'R5', r'R3', r'R7', r'R8']
    ax.set_xticks(x)
    ax.set_xticklabels(labels)
    ax.set_xlim([-0.5, 7.5])
    ax.set_ylabel(
        r'$|\Delta\varepsilon_b|/\varepsilon_{b0}$',
        color='r',
        fontdict=font,
        fontsize=24)
    ax.tick_params(labelsize=20)
    ax.text(
        0.4,
        0.15,
        r'$m_i/m_e=100$',
        color='k',
        fontsize=20,
        bbox=dict(
            facecolor='none', alpha=1.0, edgecolor='none', pad=10.0),
        horizontalalignment='left',
        verticalalignment='center',
        transform=ax.transAxes)
    for tl in ax.get_yticklabels():
        tl.set_color('r')
    ax1 = ax.twinx()
    ax1.plot(
        x,
        dke_dki,
        color='b',
        marker='v',
        markersize=10,
        linestyle='',
        markeredgecolor='b')
    ax1.set_xlim([-0.5, 7.5])
    ax1.set_ylabel(
        r'$\Delta K_e/\Delta K_i$', color='b', fontdict=font, fontsize=24)
    ax1.tick_params(labelsize=20)
    for tl in ax1.get_yticklabels():
        tl.set_color('b')
    if not os.path.isdir('../img/'):
        os.makedirs('../img/')
    dir = '../img/img_dpp/'
    if not os.path.isdir(dir):
        os.makedirs(dir)
    fname = dir + 'ene_fraction_.eps'
    fig.savefig(fname)
    plt.show()
def plot_compression_time_temp(species):
    """
    
    Plot time evolution of compression and shear heating for runs with
    different plasma temperature

    Args:
        species: particle species
    """
    dir = '../data/compression/'
    dir_jdote = '../data/jdote_data/'
    if not os.path.isdir('../img/'):
        os.makedirs('../img/')
    odir = '../img/compression/'
    if not os.path.isdir(odir):
        os.makedirs(odir)
    base_dirs, run_names = ApJ_long_paper_runs()
    fig = plt.figure(figsize=[7, 5])
    w1, h1 = 0.8, 0.27
    xs, ys = 0.96 - w1, 0.97 - h1
    gap = 0.02
    nrun = len(run_names)
    ylim1 = np.zeros((nrun, 2))
    if species == 'e':
        ylim1[0, :] = -0.05, 0.15
        ylim1[1, :] = -0.3, 1.1
        ylim1[2, :] = -1.0, 5
        ylim1[3, :] = -10.0, 30.0
        ylim1[4, :] = -2.0, 5.0
        ylim1[5, :] = -0.1, 0.2
        ylim1[6, :] = -0.5, 1.1
        ylim1[7, :] = -3.0, 6.0
        ylim1[8, :] = -1.0, 5.0
    else:
        ylim1[0, :] = -0.1, 0.25
        ylim1[1, :] = -0.6, 2.2
        ylim1[2, :] = -2.0, 10
        ylim1[3, :] = -20.0, 60.0
        ylim1[4, :] = -4.0, 13.0
        ylim1[5, :] = -0.2, 0.4
        ylim1[6, :] = -1.0, 2.2
        ylim1[7, :] = -5.0, 15.0
        ylim1[8, :] = -3.0, 7.0
    runs = [5, 6, 2]
    axs = []
    for i in runs:
        run_name = run_names[i]
        base_dir = base_dirs[i]
        picinfo_fname = '../data/pic_info/pic_info_' + run_name + '.json'
        jdote_fname = dir_jdote + 'jdote_' + run_name + '_' + species + '.json'
        pic_info = read_data_from_json(picinfo_fname)
        jdote_data = read_data_from_json(jdote_fname)
        fpath_comp = '../data/compression/' + run_name + '/'
        b0 = pic_info.b0
        ylim2 = ylim1 * b0**2
        ax = fig.add_axes([xs, ys, w1, h1])
        axs.append(ax)
        compression_time(pic_info, species, jdote_data, ylim2[i, :], ax,
                         fpath_comp)
        ys -= h1 + gap
    for ax in axs:
        ax.set_xlim([0, 1200])
    if species == 'e':
        axs[0].set_yticks(np.arange(0, 0.007, 0.002))
        axs[1].set_yticks(np.arange(0, 0.025, 0.01))
        axs[2].set_yticks(np.arange(0, 0.09, 0.02))
    else:
        axs[0].set_yticks(np.arange(0, 0.021, 0.005))
        axs[1].set_yticks(np.arange(0, 0.07, 0.02))
        axs[2].set_yticks(np.arange(0, 0.17, 0.04))
    axs[-1].tick_params(axis='x', labelbottom='on')
    axs[-1].set_xlabel(r'$t\Omega_{ci}$', fontdict=font, fontsize=20)

    label1 = r'$-p\nabla\cdot\mathbf{u}$'
    label2 = r'$-(p_\parallel - p_\perp)b_ib_j\sigma_{ij}$'
    axs[0].text(
        0.4,
        0.2,
        label1,
        color='red',
        fontsize=20,
        bbox=dict(
            facecolor='none', alpha=1.0, edgecolor='none', pad=10.0),
        horizontalalignment='left',
        verticalalignment='center',
        transform=axs[0].transAxes)
    axs[0].text(
        0.6,
        0.2,
        label2,
        color='green',
        fontsize=20,
        bbox=dict(
            facecolor='none', alpha=1.0, edgecolor='none', pad=10.0),
        horizontalalignment='left',
        verticalalignment='center',
        transform=axs[0].transAxes)
    axs[0].text(
        0.05,
        0.8,
        r'$v_\text{the}/c=0.045$',
        color='black',
        fontsize=20,
        bbox=dict(
            facecolor='none', alpha=1.0, edgecolor='none', pad=10.0),
        horizontalalignment='left',
        verticalalignment='center',
        transform=axs[0].transAxes)
    axs[1].text(
        0.05,
        0.8,
        r'$v_\text{the}/c=0.08$',
        color='black',
        fontsize=20,
        bbox=dict(
            facecolor='none', alpha=1.0, edgecolor='none', pad=10.0),
        horizontalalignment='left',
        verticalalignment='center',
        transform=axs[1].transAxes)
    axs[2].text(
        0.05,
        0.8,
        r'$v_\text{the}/c=0.14$',
        color='black',
        fontsize=20,
        bbox=dict(
            facecolor='none', alpha=1.0, edgecolor='none', pad=10.0),
        horizontalalignment='left',
        verticalalignment='center',
        transform=axs[2].transAxes)

    if not os.path.isdir('../img/'):
        os.makedirs('../img/')
    dir = '../img/img_dpp/'
    if not os.path.isdir(dir):
        os.makedirs(dir)
    fname = dir + 'comp_temp_' + species + '.eps'
    fig.savefig(fname)
    plt.show()
Exemple #11
0
def plot_jpara_dote_fraction():
    """Plot energy evolution from the parallel and perpendicular directions.
    """
    dir = '../data/jdote_data/'
    if not os.path.isdir('../img/'):
        os.makedirs('../img/')
    odir = '../img/jdote/'
    if not os.path.isdir(odir):
        os.makedirs(odir)
    base_dirs, run_names = ApJ_long_paper_runs()
    run_id = [3, 2, 6, 7, 4, 5, 1, 0]
    nrun = len(run_id)
    fraction_jpara_e = np.zeros(nrun)
    fraction_jpara_i = np.zeros(nrun)
    fraction_jperp_e = np.zeros(nrun)
    fraction_jperp_i = np.zeros(nrun)
    irun = 0
    for i in run_id:
        run_name = run_names[i]
        picinfo_fname = '../data/pic_info/pic_info_' + run_name + '.json'
        jdote_e_fname = '../data/jdote_data/jdote_' + run_name + '_e.json'
        jdote_i_fname = '../data/jdote_data/jdote_' + run_name + '_i.json'
        pic_info = read_data_from_json(picinfo_fname)
        kene_e = pic_info.kene_e
        kene_i = pic_info.kene_i
        dkene_e = kene_e[-1] - kene_e[0]
        dkene_i = kene_i[-1] - kene_i[0]
        jdote_e = read_data_from_json(jdote_e_fname)
        jdote_i = read_data_from_json(jdote_i_fname)
        jpara_dote_e = jdote_e.jqnupara_dote_int
        jperp_dote_e = jdote_e.jqnuperp_dote_int
        jpara_dote_i = jdote_i.jqnupara_dote_int
        jperp_dote_i = jdote_i.jqnuperp_dote_int
        fraction_jpara_e[irun] = jpara_dote_e[-1] / dkene_e
        fraction_jperp_e[irun] = jperp_dote_e[-1] / dkene_e
        fraction_jpara_i[irun] = jpara_dote_i[-1] / dkene_i
        fraction_jperp_i[irun] = jperp_dote_i[-1] / dkene_i
        irun += 1
    x = np.arange(8)
    fig = plt.figure(figsize=[7, 5])
    xs, ys = 0.18, 0.13
    w1, h1 = 0.78, 0.8
    ax = fig.add_axes([xs, ys, w1, h1])
    ax.plot(x,
            fraction_jpara_e[:8],
            color='r',
            marker='o',
            markersize=10,
            linestyle='')
    ax.plot(x,
            fraction_jpara_i[:8],
            color='b',
            marker='o',
            markersize=10,
            linestyle='')
    labels = [r'R6', r'R1', r'R2', r'R4', r'R5', r'R3', r'R7', r'R8']
    ax.set_xticks(x)
    ax.set_xticklabels(labels)
    ax.set_xlim([-0.5, 7.5])
    ax.set_ylabel(r'Fraction of Parallel Acceleration',
                  fontdict=font,
                  fontsize=24)
    ax.tick_params(labelsize=20)
    ax.text(0.05,
            0.15,
            r'Electron',
            color='r',
            fontsize=24,
            bbox=dict(facecolor='none', alpha=1.0, edgecolor='none', pad=10.0),
            horizontalalignment='left',
            verticalalignment='center',
            transform=ax.transAxes)
    ax.text(0.05,
            0.25,
            r'Ion',
            color='b',
            fontsize=24,
            bbox=dict(facecolor='none', alpha=1.0, edgecolor='none', pad=10.0),
            horizontalalignment='left',
            verticalalignment='center',
            transform=ax.transAxes)
    if not os.path.isdir('../img/'):
        os.makedirs('../img/')
    dir = '../img/img_dpp/'
    if not os.path.isdir(dir):
        os.makedirs(dir)
    fname = dir + 'para_acc_fraction.eps'
    fig.savefig(fname)
    plt.show()
Exemple #12
0
def calc_exb(run_dir, run_name, tframe, coords):
    """Calculate ExB drift velocity

    Args:
        run_dir: PIC run directory
        run_name: PIC run name
        trame: time frame
        coords: coordinates for different fields
    """
    picinfo_fname = '../data/pic_info/pic_info_' + run_name + '.json'
    pic_info = read_data_from_json(picinfo_fname)
    nx = pic_info.nx
    nz = pic_info.nz
    kwargs = {
        "current_time": tframe,
        "xl": 0,
        "xr": pic_info.lx_di,
        "zb": -0.5 * pic_info.lz_di,
        "zt": 0.5 * pic_info.lz_di
    }
    size_one_frame = pic_info.nx * pic_info.nz * 4
    sigma = 3
    fname = run_dir + "data/bx.gda"
    _, _, bx = read_2d_fields(pic_info, fname, **kwargs)
    f = MultilinearInterpolator(coords["smin_ez_bx"],
                                coords["smax_ez_bx"],
                                coords["orders"],
                                dtype=np.float32)
    f.set_values(np.atleast_2d(np.transpose(bx).flatten()))
    bx = np.transpose(f(coords["coord"]).reshape((nx, nz)))

    fname = run_dir + "data/by.gda"
    _, _, by = read_2d_fields(pic_info, fname, **kwargs)
    f = MultilinearInterpolator(coords["smin_by"],
                                coords["smax_by"],
                                coords["orders"],
                                dtype=np.float32)
    f.set_values(np.atleast_2d(np.transpose(by).flatten()))
    by = np.transpose(f(coords["coord"]).reshape((nx, nz)))

    fname = run_dir + "data/bz.gda"
    _, _, bz = read_2d_fields(pic_info, fname, **kwargs)
    f = MultilinearInterpolator(coords["smin_ex_bz"],
                                coords["smax_ex_bz"],
                                coords["orders"],
                                dtype=np.float32)
    f.set_values(np.atleast_2d(np.transpose(bz).flatten()))
    bz = np.transpose(f(coords["coord"]).reshape((nx, nz)))

    fname = run_dir + "data/ex.gda"
    _, _, ex = read_2d_fields(pic_info, fname, **kwargs)
    ex = gaussian_filter(ex, sigma)
    f = MultilinearInterpolator(coords["smin_ex_bz"],
                                coords["smax_ex_bz"],
                                coords["orders"],
                                dtype=np.float32)
    f.set_values(np.atleast_2d(np.transpose(ex).flatten()))
    ex = np.transpose(f(coords["coord"]).reshape((nx, nz)))

    fname = run_dir + "data/ey.gda"
    _, _, ey = read_2d_fields(pic_info, fname, **kwargs)
    ey = gaussian_filter(ey, sigma)
    f = MultilinearInterpolator(coords["smin_h"],
                                coords["smax_h"],
                                coords["orders"],
                                dtype=np.float32)
    f.set_values(np.atleast_2d(np.transpose(ey).flatten()))
    ey = np.transpose(f(coords["coord"]).reshape((nx, nz)))

    fname = run_dir + "data/ez.gda"
    _, _, ez = read_2d_fields(pic_info, fname, **kwargs)
    ez = gaussian_filter(ez, sigma)
    f = MultilinearInterpolator(coords["smin_ez_bx"],
                                coords["smax_ez_bx"],
                                coords["orders"],
                                dtype=np.float32)
    f.set_values(np.atleast_2d(np.transpose(ez).flatten()))
    ez = np.transpose(f(coords["coord"]).reshape((nx, nz)))

    ib2 = 1.0 / (bx**2 + by**2 + bz**2)
    exb_x = (ey * bz - ez * by) * ib2
    exb_y = (ez * bx - ex * bz) * ib2
    exb_z = (ex * by - ey * bx) * ib2

    fname = run_dir + "data/exb_x.gda"
    with open(fname, 'a+') as f:
        offset = size_one_frame * tframe
        f.seek(offset, os.SEEK_SET)
        exb_x.tofile(f)

    fname = run_dir + "data/exb_y.gda"
    with open(fname, 'a+') as f:
        offset = size_one_frame * tframe
        f.seek(offset, os.SEEK_SET)
        exb_y.tofile(f)

    fname = run_dir + "data/exb_z.gda"
    with open(fname, 'a+') as f:
        offset = size_one_frame * tframe
        f.seek(offset, os.SEEK_SET)
        exb_z.tofile(f)
def plot_particle_number():
    """
    """
    temp = 0.73
    l0 = 0.13  # length in meter
    potentials = [50, 100, 150, 200, 200]
    run_names = ['v50', 'v100', 'v150', 'v200', 'v200_b0_wce']
    nes = [1.4E6, 1.45E6, 1.48E6, 1.48E6, 1.48E6]  # in cm^-3
    lnames = ['50 V', '100 V', '150 V', '200 V', '200 V, B=0']
    fig = plt.figure(figsize=[7, 5])
    xs, ys = 0.13, 0.13
    w1, h1 = 0.8, 0.8
    ax = fig.add_axes([xs, ys, w1, h1])
    tmax = 0
    current_mean = []
    for potential, ne, run_name, lname in zip(potentials, nes, run_names, lnames):
        # run_name = 'v' + str(potential)
        picinfo_fname = '../data/pic_info/pic_info_' + run_name + '.json'
        pic_info = read_data_from_json(picinfo_fname)
        fname = '../data/particle_number/nptl_' + run_name + '.dat'
        data = np.genfromtxt(fname)
        t = data[:, 0]
        dt = t[1] - t[0]
        ntot = data[:, 1:]
        dne = np.gradient(ntot[:, 0], axis=0)
        wpe = 1.78E9 * math.sqrt(ne / n0)  # ne is normalized by n0
        dt /= wpe
        ntot = pic_info.nx * pic_info.nz * pic_info.nppc
        smime = math.sqrt(pic_info.mime)
        lx_de = pic_info.lx_di * smime
        lz_de = pic_info.lz_di * smime
        de = c0 * 1E3 / wpe
        vol = lx_de * lz_de * de**2  # assume the third dimension is 1 meter
        dne_real = dne * ne * 1E6 * vol / ntot
        current = -dne_real * qe / dt
        current *= 1E3  # A -> mA
        lname = str(potential) + 'V'
        ax.plot(t, current * l0, linewidth=2, label=lname)
        tmax = max(t.max(), tmax)
        current_mean.append(np.mean(current[-20:]))
    ax.tick_params(labelsize=16)
    ax.set_xlabel(r'$t\omega_{pe}$', fontdict=font, fontsize=20)
    ax.set_ylabel(r'$I$/mA', fontdict=font, fontsize=20)
    leg = ax.legend(
        loc=1,
        prop={'size': 20},
        ncol=1,
        shadow=False,
        fancybox=False,
        frameon=False)
    ax.set_xlim([0, tmax])
    ax.set_ylim([0, 1])
    fig.savefig('../img/current_time.eps')
    fig.savefig('../img/current_time.jpg', dpi=300)

    r0 = 0.0925E-2  # in meter
    area = 2 * math.pi * r0  # Assume 1m length
    current_mean = np.asarray(current_mean)
    current_mean /= area
    current_thermal = np.asarray([29.9, 31.2, 31.8, 31.8, 31.8])  # mA/m^2
    potential = np.asarray([50, 100, 150, 200, 200])

    fig = plt.figure(figsize=[7, 5])
    xs, ys = 0.13, 0.13
    w1, h1 = 0.8, 0.8
    ax = fig.add_axes([xs, ys, w1, h1])
    current_norm = current_mean / current_thermal
    ax.plot(
        potential / temp, current_norm, linewidth=2, marker='o', markersize=10)
    ax.tick_params(labelsize=16)
    ax.set_xlabel(
        'body bias / electron temperature', fontdict=font, fontsize=20)
    ax.set_ylabel(
        'collected current / thermal current', fontdict=font, fontsize=20)
    fig.savefig('../img/current_potential.eps')
    fig.savefig('../img/current_potential.jpg', dpi=300)

    plt.show()
Exemple #14
0
def plot_energy_conversion_fraction():
    """Plot energy evolution for multiple runs.
    """
    dir = '../data/pic_info/'
    if not os.path.isdir('../img/'):
        os.makedirs('../img/')
    odir = '../img/ene_evolution/'
    if not os.path.isdir(odir):
        os.makedirs(odir)
    fnames = list_pic_info_dir(dir)
    print fnames
    # run_id = [2, 5, 1, 6, 7, 8, 0, 4]
    run_id = [2, 8, 1, 9, 10, 12, 0, 7]
    nrun = len(run_id)
    ene_fraction = np.zeros(nrun)
    dke_dki = np.zeros(nrun)
    irun = 0
    i = 0
    for fname in fnames:
        print i, fname
        i += 1
    for i in run_id:
        fname = fnames[i]
        print fname
        rname = fname.replace(".json", ".eps")
        oname = rname.replace("pic_info", "enes")
        oname = odir + oname
        fname = dir + fname
        pic_info = read_data_from_json(fname)
        tenergy = pic_info.tenergy
        ene_magnetic = pic_info.ene_magnetic
        kene_e = pic_info.kene_e
        kene_i = pic_info.kene_i
        dke = kene_e[-1] - kene_e[0]
        dki = kene_i[-1] - kene_i[0]
        enorm = ene_magnetic[0]
        ene_fraction[irun] = 1.0 - ene_magnetic[-1] / enorm
        dke_dki[irun] = dke / dki
        irun += 1
    x = np.arange(8)
    fig = plt.figure(figsize=[7, 5])
    xs, ys = 0.16, 0.13
    w1, h1 = 0.7, 0.8
    ax = fig.add_axes([xs, ys, w1, h1])
    ax.plot(x,
            ene_fraction,
            color='r',
            marker='o',
            markersize=10,
            linestyle='',
            markeredgecolor='r')
    labels = [r'R6', r'R1', r'R4', r'R2', r'R5', r'R3', r'R7', r'R8']
    ax.set_xticks(x)
    ax.set_xticklabels(labels)
    ax.set_xlim([-0.5, 7.5])
    ax.set_ylabel(r'$|\Delta\varepsilon_b|/\varepsilon_{b0}$',
                  color='r',
                  fontdict=font,
                  fontsize=24)
    ax.tick_params(labelsize=20)
    ax.text(0.4,
            0.15,
            r'$m_i/m_e=100$',
            color='k',
            fontsize=20,
            bbox=dict(facecolor='none', alpha=1.0, edgecolor='none', pad=10.0),
            horizontalalignment='left',
            verticalalignment='center',
            transform=ax.transAxes)
    for tl in ax.get_yticklabels():
        tl.set_color('r')
    ax1 = ax.twinx()
    ax1.plot(x,
             dke_dki,
             color='b',
             marker='v',
             markersize=10,
             linestyle='',
             markeredgecolor='b')
    ax1.set_xlim([-0.5, 7.5])
    ax1.set_ylabel(r'$\Delta K_e/\Delta K_i$',
                   color='b',
                   fontdict=font,
                   fontsize=24)
    ax1.tick_params(labelsize=20)
    for tl in ax1.get_yticklabels():
        tl.set_color('b')
    if not os.path.isdir('../img/'):
        os.makedirs('../img/')
    dir = '../img/img_dpp/'
    if not os.path.isdir(dir):
        os.makedirs(dir)
    fname = dir + 'ene_fraction_.eps'
    fig.savefig(fname)
    plt.show()
Exemple #15
0
def plot_compression_time_temp(species):
    """
    
    Plot time evolution of compression and shear heating for runs with
    different plasma temperature

    Args:
        species: particle species
    """
    dir = '../data/compression/'
    dir_jdote = '../data/jdote_data/'
    if not os.path.isdir('../img/'):
        os.makedirs('../img/')
    odir = '../img/compression/'
    if not os.path.isdir(odir):
        os.makedirs(odir)
    base_dirs, run_names = ApJ_long_paper_runs()
    fig = plt.figure(figsize=[7, 5])
    w1, h1 = 0.8, 0.27
    xs, ys = 0.96 - w1, 0.97 - h1
    gap = 0.02
    nrun = len(run_names)
    ylim1 = np.zeros((nrun, 2))
    if species == 'e':
        ylim1[0, :] = -0.05, 0.15
        ylim1[1, :] = -0.3, 1.1
        ylim1[2, :] = -1.0, 5
        ylim1[3, :] = -10.0, 30.0
        ylim1[4, :] = -2.0, 5.0
        ylim1[5, :] = -0.1, 0.2
        ylim1[6, :] = -0.5, 1.1
        ylim1[7, :] = -3.0, 6.0
        ylim1[8, :] = -1.0, 5.0
    else:
        ylim1[0, :] = -0.1, 0.25
        ylim1[1, :] = -0.6, 2.2
        ylim1[2, :] = -2.0, 10
        ylim1[3, :] = -20.0, 60.0
        ylim1[4, :] = -4.0, 13.0
        ylim1[5, :] = -0.2, 0.4
        ylim1[6, :] = -1.0, 2.2
        ylim1[7, :] = -5.0, 15.0
        ylim1[8, :] = -3.0, 7.0
    runs = [5, 6, 2]
    axs = []
    for i in runs:
        run_name = run_names[i]
        base_dir = base_dirs[i]
        picinfo_fname = '../data/pic_info/pic_info_' + run_name + '.json'
        jdote_fname = dir_jdote + 'jdote_' + run_name + '_' + species + '.json'
        pic_info = read_data_from_json(picinfo_fname)
        jdote_data = read_data_from_json(jdote_fname)
        fpath_comp = '../data/compression/' + run_name + '/'
        b0 = pic_info.b0
        ylim2 = ylim1 * b0**2
        ax = fig.add_axes([xs, ys, w1, h1])
        axs.append(ax)
        compression_time(pic_info, species, jdote_data, ylim2[i, :], ax,
                         fpath_comp)
        ys -= h1 + gap
    for ax in axs:
        ax.set_xlim([0, 1200])
    if species == 'e':
        axs[0].set_yticks(np.arange(0, 0.007, 0.002))
        axs[1].set_yticks(np.arange(0, 0.025, 0.01))
        axs[2].set_yticks(np.arange(0, 0.09, 0.02))
    else:
        axs[0].set_yticks(np.arange(0, 0.021, 0.005))
        axs[1].set_yticks(np.arange(0, 0.07, 0.02))
        axs[2].set_yticks(np.arange(0, 0.17, 0.04))
    axs[-1].tick_params(axis='x', labelbottom='on')
    axs[-1].set_xlabel(r'$t\Omega_{ci}$', fontdict=font, fontsize=20)

    label1 = r'$-p\nabla\cdot\mathbf{u}$'
    label2 = r'$-(p_\parallel - p_\perp)b_ib_j\sigma_{ij}$'
    axs[0].text(0.4,
                0.2,
                label1,
                color='red',
                fontsize=20,
                bbox=dict(facecolor='none',
                          alpha=1.0,
                          edgecolor='none',
                          pad=10.0),
                horizontalalignment='left',
                verticalalignment='center',
                transform=axs[0].transAxes)
    axs[0].text(0.6,
                0.2,
                label2,
                color='green',
                fontsize=20,
                bbox=dict(facecolor='none',
                          alpha=1.0,
                          edgecolor='none',
                          pad=10.0),
                horizontalalignment='left',
                verticalalignment='center',
                transform=axs[0].transAxes)
    axs[0].text(0.05,
                0.8,
                r'$v_\text{the}/c=0.045$',
                color='black',
                fontsize=20,
                bbox=dict(facecolor='none',
                          alpha=1.0,
                          edgecolor='none',
                          pad=10.0),
                horizontalalignment='left',
                verticalalignment='center',
                transform=axs[0].transAxes)
    axs[1].text(0.05,
                0.8,
                r'$v_\text{the}/c=0.08$',
                color='black',
                fontsize=20,
                bbox=dict(facecolor='none',
                          alpha=1.0,
                          edgecolor='none',
                          pad=10.0),
                horizontalalignment='left',
                verticalalignment='center',
                transform=axs[1].transAxes)
    axs[2].text(0.05,
                0.8,
                r'$v_\text{the}/c=0.14$',
                color='black',
                fontsize=20,
                bbox=dict(facecolor='none',
                          alpha=1.0,
                          edgecolor='none',
                          pad=10.0),
                horizontalalignment='left',
                verticalalignment='center',
                transform=axs[2].transAxes)

    if not os.path.isdir('../img/'):
        os.makedirs('../img/')
    dir = '../img/img_dpp/'
    if not os.path.isdir(dir):
        os.makedirs(dir)
    fname = dir + 'comp_temp_' + species + '.eps'
    fig.savefig(fname)
    plt.show()
Exemple #16
0
def plot_energy_conversion_fraction_beta():
    """Plot energy evolution for multiple runs with different beta
    """
    picinfo_dir = '../data/pic_info/'
    mkdir_p(picinfo_dir)
    odir = '../img/ene_evolution/'
    mkdir_p(odir)
    run_names = [
        'sigma1-mime25-beta0002', 'mime25_beta0007', 'mime25_beta002',
        'mime25_beta007', 'mime25_beta02'
    ]
    labels = [
        'R7\n 0.0002', 'R6\n 0.007', 'R1\n 0.02', 'R7\n 0.07', 'R8\n 0.2'
    ]
    run_label = r'$\beta_e = $'
    fname = 'ene_fraction_beta.eps'
    # run_names = ['mime25_beta002', 'mime25_beta002_sigma033',
    #         'mime25_beta002_sigma01']
    # labels = ['R1\n $1.0$', 'R2\n $\sqrt{3}$', 'R3\n $\sqrt{10}$']
    # run_label = r'$\omega_{pe} / \Omega_{ce} = $'
    # fname = 'ene_fraction_wpe_wce.eps'
    nrun = len(run_names)
    ene_fraction = np.zeros(nrun)
    dke_dki = np.zeros(nrun)
    irun = 0
    for run_name in run_names:
        print run_name
        rname = run_name.replace(".json", ".eps")
        oname = rname.replace("pic_info", "enes")
        oname = odir + oname
        picinfo_fname = picinfo_dir + 'pic_info_' + run_name + '.json'
        pic_info = read_data_from_json(picinfo_fname)
        tenergy = pic_info.tenergy
        ene_magnetic = pic_info.ene_magnetic
        kene_e = pic_info.kene_e
        kene_i = pic_info.kene_i
        dke = kene_e[-1] - kene_e[0]
        dki = kene_i[-1] - kene_i[0]
        enorm = ene_magnetic[0]
        ene_fraction[irun] = 1.0 - ene_magnetic[-1] / enorm
        dke_dki[irun] = dke / dki
        irun += 1
    x = np.arange(nrun)
    fig = plt.figure(figsize=[7, 5])
    xs, ys = 0.16, 0.13
    w1, h1 = 0.7, 0.8
    ax = fig.add_axes([xs, ys, w1, h1])
    ax.plot(x,
            ene_fraction,
            color='r',
            marker='o',
            markersize=10,
            linestyle='',
            markeredgecolor='r')
    ax.set_xticks(x)
    ax.set_xticklabels(labels)
    ax.set_xlim([-0.5, nrun - 0.5])
    ax.set_ylabel(r'$|\Delta\varepsilon_b|/\varepsilon_{b0}$',
                  color='r',
                  fontdict=font,
                  fontsize=24)
    ax.tick_params(labelsize=20)
    ax.text(-0.12,
            -0.12,
            run_label,
            color='k',
            fontsize=20,
            bbox=dict(facecolor='none', alpha=1.0, edgecolor='none', pad=10.0),
            horizontalalignment='left',
            verticalalignment='center',
            transform=ax.transAxes)
    for tl in ax.get_yticklabels():
        tl.set_color('r')
    ax1 = ax.twinx()
    ax1.plot(x,
             dke_dki,
             color='b',
             marker='D',
             markersize=10,
             linestyle='',
             markeredgecolor='b')
    ax1.set_xlim([-0.5, nrun - 0.5])
    ax1.set_ylabel(r'$\Delta K_e/\Delta K_i$',
                   color='b',
                   fontdict=font,
                   fontsize=24)
    ax1.tick_params(labelsize=20)
    for tl in ax1.get_yticklabels():
        tl.set_color('b')
    img_dir = '../img/img_dpp/'
    mkdir_p(img_dir)
    fig.savefig(img_dir + fname)
    plt.show()
def plot_jpara_dote_fraction():
    """Plot energy evolution from the parallel and perpendicular directions.
    """
    dir = '../data/jdote_data/'
    if not os.path.isdir('../img/'):
        os.makedirs('../img/')
    odir = '../img/jdote/'
    if not os.path.isdir(odir):
        os.makedirs(odir)
    base_dirs, run_names = ApJ_long_paper_runs()
    run_id = [3, 2, 6, 7, 4, 5, 1, 0]
    nrun = len(run_id)
    fraction_jpara_e = np.zeros(nrun)
    fraction_jpara_i = np.zeros(nrun)
    fraction_jperp_e = np.zeros(nrun)
    fraction_jperp_i = np.zeros(nrun)
    irun = 0
    for i in run_id:
        run_name = run_names[i]
        picinfo_fname = '../data/pic_info/pic_info_' + run_name + '.json'
        jdote_e_fname = '../data/jdote_data/jdote_' + run_name + '_e.json'
        jdote_i_fname = '../data/jdote_data/jdote_' + run_name + '_i.json'
        pic_info = read_data_from_json(picinfo_fname)
        kene_e = pic_info.kene_e
        kene_i = pic_info.kene_i
        dkene_e = kene_e[-1] - kene_e[0]
        dkene_i = kene_i[-1] - kene_i[0]
        jdote_e = read_data_from_json(jdote_e_fname)
        jdote_i = read_data_from_json(jdote_i_fname)
        jpara_dote_e = jdote_e.jqnupara_dote_int
        jperp_dote_e = jdote_e.jqnuperp_dote_int
        jpara_dote_i = jdote_i.jqnupara_dote_int
        jperp_dote_i = jdote_i.jqnuperp_dote_int
        fraction_jpara_e[irun] = jpara_dote_e[-1] / dkene_e
        fraction_jperp_e[irun] = jperp_dote_e[-1] / dkene_e
        fraction_jpara_i[irun] = jpara_dote_i[-1] / dkene_i
        fraction_jperp_i[irun] = jperp_dote_i[-1] / dkene_i
        irun += 1
    x = np.arange(8)
    fig = plt.figure(figsize=[7, 5])
    xs, ys = 0.18, 0.13
    w1, h1 = 0.78, 0.8
    ax = fig.add_axes([xs, ys, w1, h1])
    ax.plot(
        x,
        fraction_jpara_e[:8],
        color='r',
        marker='o',
        markersize=10,
        linestyle='')
    ax.plot(
        x,
        fraction_jpara_i[:8],
        color='b',
        marker='o',
        markersize=10,
        linestyle='')
    labels = [r'R6', r'R1', r'R2', r'R4', r'R5', r'R3', r'R7', r'R8']
    ax.set_xticks(x)
    ax.set_xticklabels(labels)
    ax.set_xlim([-0.5, 7.5])
    ax.set_ylabel(
        r'Fraction of Parallel Acceleration', fontdict=font, fontsize=24)
    ax.tick_params(labelsize=20)
    ax.text(
        0.05,
        0.15,
        r'Electron',
        color='r',
        fontsize=24,
        bbox=dict(
            facecolor='none', alpha=1.0, edgecolor='none', pad=10.0),
        horizontalalignment='left',
        verticalalignment='center',
        transform=ax.transAxes)
    ax.text(
        0.05,
        0.25,
        r'Ion',
        color='b',
        fontsize=24,
        bbox=dict(
            facecolor='none', alpha=1.0, edgecolor='none', pad=10.0),
        horizontalalignment='left',
        verticalalignment='center',
        transform=ax.transAxes)
    if not os.path.isdir('../img/'):
        os.makedirs('../img/')
    dir = '../img/img_dpp/'
    if not os.path.isdir(dir):
        os.makedirs(dir)
    fname = dir + 'para_acc_fraction.eps'
    fig.savefig(fname)
    plt.show()
def plot_energy_conversion_fraction_beta():
    """Plot energy evolution for multiple runs with different beta
    """
    picinfo_dir = '../data/pic_info/'
    mkdir_p(picinfo_dir)
    odir = '../img/ene_evolution/'
    mkdir_p(odir)
    run_names = [
        'sigma1-mime25-beta0002', 'mime25_beta0007', 'mime25_beta002',
        'mime25_beta007', 'mime25_beta02'
    ]
    labels = [
        'R7\n 0.0002', 'R6\n 0.007', 'R1\n 0.02', 'R7\n 0.07', 'R8\n 0.2'
    ]
    run_label = r'$\beta_e = $'
    fname = 'ene_fraction_beta.eps'
    # run_names = ['mime25_beta002', 'mime25_beta002_sigma033',
    #         'mime25_beta002_sigma01']
    # labels = ['R1\n $1.0$', 'R2\n $\sqrt{3}$', 'R3\n $\sqrt{10}$']
    # run_label = r'$\omega_{pe} / \Omega_{ce} = $'
    # fname = 'ene_fraction_wpe_wce.eps'
    nrun = len(run_names)
    ene_fraction = np.zeros(nrun)
    dke_dki = np.zeros(nrun)
    irun = 0
    for run_name in run_names:
        print run_name
        rname = run_name.replace(".json", ".eps")
        oname = rname.replace("pic_info", "enes")
        oname = odir + oname
        picinfo_fname = picinfo_dir + 'pic_info_' + run_name + '.json'
        pic_info = read_data_from_json(picinfo_fname)
        tenergy = pic_info.tenergy
        ene_magnetic = pic_info.ene_magnetic
        kene_e = pic_info.kene_e
        kene_i = pic_info.kene_i
        dke = kene_e[-1] - kene_e[0]
        dki = kene_i[-1] - kene_i[0]
        enorm = ene_magnetic[0]
        ene_fraction[irun] = 1.0 - ene_magnetic[-1] / enorm
        dke_dki[irun] = dke / dki
        irun += 1
    x = np.arange(nrun)
    fig = plt.figure(figsize=[7, 5])
    xs, ys = 0.16, 0.13
    w1, h1 = 0.7, 0.8
    ax = fig.add_axes([xs, ys, w1, h1])
    ax.plot(
        x,
        ene_fraction,
        color='r',
        marker='o',
        markersize=10,
        linestyle='',
        markeredgecolor='r')
    ax.set_xticks(x)
    ax.set_xticklabels(labels)
    ax.set_xlim([-0.5, nrun - 0.5])
    ax.set_ylabel(
        r'$|\Delta\varepsilon_b|/\varepsilon_{b0}$',
        color='r',
        fontdict=font,
        fontsize=24)
    ax.tick_params(labelsize=20)
    ax.text(
        -0.12,
        -0.12,
        run_label,
        color='k',
        fontsize=20,
        bbox=dict(
            facecolor='none', alpha=1.0, edgecolor='none', pad=10.0),
        horizontalalignment='left',
        verticalalignment='center',
        transform=ax.transAxes)
    for tl in ax.get_yticklabels():
        tl.set_color('r')
    ax1 = ax.twinx()
    ax1.plot(
        x,
        dke_dki,
        color='b',
        marker='D',
        markersize=10,
        linestyle='',
        markeredgecolor='b')
    ax1.set_xlim([-0.5, nrun - 0.5])
    ax1.set_ylabel(
        r'$\Delta K_e/\Delta K_i$', color='b', fontdict=font, fontsize=24)
    ax1.tick_params(labelsize=20)
    for tl in ax1.get_yticklabels():
        tl.set_color('b')
    img_dir = '../img/img_dpp/'
    mkdir_p(img_dir)
    fig.savefig(img_dir + fname)
    plt.show()
Exemple #19
0
    vi = np.fromfile(fname, dtype=np.float32)
    vs = (ve * ne + vi * ni * mime) * inrho
    vs.tofile(fdir + 'vy.gda')

    fname = run_dir + 'data/vez.gda'
    ve = np.fromfile(fname, dtype=np.float32)
    fname = run_dir + 'data/viz.gda'
    vi = np.fromfile(fname, dtype=np.float32)
    vs = (ve * ne + vi * ni * mime) * inrho
    vs.tofile(fdir + 'vz.gda')


if __name__ == "__main__":
    cmdargs = sys.argv
    if (len(cmdargs) > 2):
        run_dir = cmdargs[1]
        run_name = cmdargs[2]
    else:
        run_dir = '/net/scratch3/xiaocanli/reconnection/mime25-sigma1-beta002-guide00-200-100/'
        run_name = 'mime25_beta002_guide00'
    picinfo_fname = '../data/pic_info/pic_info_' + run_name + '.json'
    pic_info = read_data_from_json(picinfo_fname)
    mime = pic_info.mime
    calc_vsingle(run_dir, mime)

    def processInput(job_id):
        print job_id

    ncores = multiprocessing.cpu_count()
    # Parallel(n_jobs=ncores)(delayed(processInput)(rank) for rank in ranks)
def plot_particle_number():
    """
    """
    temp = 0.73
    l0 = 0.13  # length in meter
    potentials = [50, 100, 150, 200, 200]
    run_names = ['v50', 'v100', 'v150', 'v200', 'v200_b0_wce']
    nes = [1.4E6, 1.45E6, 1.48E6, 1.48E6, 1.48E6]  # in cm^-3
    lnames = ['50 V', '100 V', '150 V', '200 V', '200 V, B=0']
    fig = plt.figure(figsize=[7, 5])
    xs, ys = 0.13, 0.13
    w1, h1 = 0.8, 0.8
    ax = fig.add_axes([xs, ys, w1, h1])
    tmax = 0
    current_mean = []
    for potential, ne, run_name, lname in zip(potentials, nes, run_names,
                                              lnames):
        # run_name = 'v' + str(potential)
        picinfo_fname = '../data/pic_info/pic_info_' + run_name + '.json'
        pic_info = read_data_from_json(picinfo_fname)
        fname = '../data/particle_number/nptl_' + run_name + '.dat'
        data = np.genfromtxt(fname)
        t = data[:, 0]
        dt = t[1] - t[0]
        ntot = data[:, 1:]
        dne = np.gradient(ntot[:, 0], axis=0)
        wpe = 1.78E9 * math.sqrt(ne / n0)  # ne is normalized by n0
        dt /= wpe
        ntot = pic_info.nx * pic_info.nz * pic_info.nppc
        smime = math.sqrt(pic_info.mime)
        lx_de = pic_info.lx_di * smime
        lz_de = pic_info.lz_di * smime
        de = c0 * 1E3 / wpe
        vol = lx_de * lz_de * de**2  # assume the third dimension is 1 meter
        dne_real = dne * ne * 1E6 * vol / ntot
        current = -dne_real * qe / dt
        current *= 1E3  # A -> mA
        lname = str(potential) + 'V'
        ax.plot(t, current * l0, linewidth=2, label=lname)
        tmax = max(t.max(), tmax)
        current_mean.append(np.mean(current[-20:]))
    ax.tick_params(labelsize=16)
    ax.set_xlabel(r'$t\omega_{pe}$', fontdict=font, fontsize=20)
    ax.set_ylabel(r'$I$/mA', fontdict=font, fontsize=20)
    leg = ax.legend(loc=1,
                    prop={'size': 20},
                    ncol=1,
                    shadow=False,
                    fancybox=False,
                    frameon=False)
    ax.set_xlim([0, tmax])
    ax.set_ylim([0, 1])
    fig.savefig('../img/current_time.eps')
    fig.savefig('../img/current_time.jpg', dpi=300)

    r0 = 0.0925E-2  # in meter
    area = 2 * math.pi * r0  # Assume 1m length
    current_mean = np.asarray(current_mean)
    current_mean /= area
    current_thermal = np.asarray([29.9, 31.2, 31.8, 31.8, 31.8])  # mA/m^2
    potential = np.asarray([50, 100, 150, 200, 200])

    fig = plt.figure(figsize=[7, 5])
    xs, ys = 0.13, 0.13
    w1, h1 = 0.8, 0.8
    ax = fig.add_axes([xs, ys, w1, h1])
    current_norm = current_mean / current_thermal
    ax.plot(potential / temp,
            current_norm,
            linewidth=2,
            marker='o',
            markersize=10)
    ax.tick_params(labelsize=16)
    ax.set_xlabel('body bias / electron temperature',
                  fontdict=font,
                  fontsize=20)
    ax.set_ylabel('collected current / thermal current',
                  fontdict=font,
                  fontsize=20)
    fig.savefig('../img/current_potential.eps')
    fig.savefig('../img/current_potential.jpg', dpi=300)

    plt.show()