Exemple #1
0
def fueltypes_over_time(scenario_result_container,
                        sim_yrs,
                        fig_name,
                        fueltypes,
                        result_path,
                        plot_points=False,
                        unit='TWh',
                        crit_smooth_line=True,
                        seperate_legend=False):
    """Plot fueltypes over time
    """
    statistics_to_print = []

    fig = plt.figure(figsize=basic_plot_functions.cm2inch(10,
                                                          10))  #width, height
    ax = fig.add_subplot(1, 1, 1)

    colors = {
        # Low elec
        'electricity': '#3e3838',
        'gas': '#ae7c7c',
        'hydrogen': '#6cbbb3',
    }

    line_styles_default = plotting_styles.linestyles()

    linestyles = {
        'h_max': line_styles_default[0],
        'h_min': line_styles_default[6],
        'l_min': line_styles_default[8],
        'l_max': line_styles_default[9],
    }

    for cnt_scenario, i in enumerate(scenario_result_container):
        scenario_name = i['scenario_name']

        for cnt_linestyle, fueltype_str in enumerate(fueltypes):
            national_sum = i['national_{}'.format(fueltype_str)]

            if unit == 'TWh':
                unit_factor = conversions.gwh_to_twh(1)
            elif unit == 'GWh':
                unit_factor = 1
            else:
                raise Exception("Wrong unit")

            national_sum = national_sum * unit_factor

            # Calculate quantiles
            quantile_95 = 0.95
            quantile_05 = 0.05

            try:
                color = colors[fueltype_str]
            except KeyError:
                #color = list(colors.values())[cnt_linestyle]
                raise Exception("Wrong color")

            try:
                linestyle = linestyles[scenario_name]
            except KeyError:
                linestyle = list(linestyles.values())[cnt_scenario]
            try:
                marker = marker_styles[scenario_name]
            except KeyError:
                marker = list(marker_styles.values())[cnt_scenario]

            # Calculate average across all weather scenarios
            mean_national_sum = national_sum.mean(axis=0)
            mean_national_sum_sim_yrs = copy.copy(mean_national_sum)

            statistics_to_print.append(
                "{} fueltype_str: {} mean_national_sum_sim_yrs: {}".format(
                    scenario_name, fueltype_str, mean_national_sum_sim_yrs))

            # Standard deviation over all realisations
            df_q_05 = national_sum.quantile(quantile_05)
            df_q_95 = national_sum.quantile(quantile_95)

            statistics_to_print.append(
                "{} fueltype_str: {} df_q_05: {}".format(
                    scenario_name, fueltype_str, df_q_05))
            statistics_to_print.append(
                "{} fueltype_str: {} df_q_95: {}".format(
                    scenario_name, fueltype_str, df_q_95))
            # --------------------
            # Try to smooth lines
            # --------------------
            sim_yrs_smoothed = sim_yrs
            if crit_smooth_line:
                try:
                    sim_yrs_smoothed, mean_national_sum_smoothed = basic_plot_functions.smooth_data(
                        sim_yrs, mean_national_sum, num=500)
                    _, df_q_05_smoothed = basic_plot_functions.smooth_data(
                        sim_yrs, df_q_05, num=500)
                    _, df_q_95_smoothed = basic_plot_functions.smooth_data(
                        sim_yrs, df_q_95, num=500)

                    mean_national_sum = pd.Series(mean_national_sum_smoothed,
                                                  sim_yrs_smoothed)
                    df_q_05 = pd.Series(df_q_05_smoothed, sim_yrs_smoothed)
                    df_q_95 = pd.Series(df_q_95_smoothed, sim_yrs_smoothed)
                except:
                    print("did not owrk {} {}".format(fueltype_str,
                                                      scenario_name))
                    pass

            # ------------------------
            # Plot lines
            # ------------------------
            plt.plot(mean_national_sum,
                     label="{} {}".format(fueltype_str, scenario_name),
                     linestyle=linestyle,
                     color=color,
                     zorder=1,
                     clip_on=True)

            # ------------------------
            # Plot markers
            # ------------------------
            if plot_points:
                plt.scatter(sim_yrs,
                            mean_national_sum_sim_yrs,
                            marker=marker,
                            edgecolor='black',
                            linewidth=0.5,
                            c=color,
                            zorder=2,
                            s=15,
                            clip_on=False)  #do not clip points on axis

            # Plottin qunatilse and average scenario
            df_q_05.plot.line(color=color,
                              linestyle='--',
                              linewidth=0.1,
                              label='_nolegend_')  #, label="0.05")
            df_q_95.plot.line(color=color,
                              linestyle='--',
                              linewidth=0.1,
                              label='_nolegend_')  #, label="0.05")

            plt.fill_between(
                sim_yrs_smoothed,
                list(df_q_95),  #y1
                list(df_q_05),  #y2
                alpha=0.25,
                facecolor=color,
            )

    plt.xlim(2015, 2050)
    plt.ylim(0)

    ax = plt.gca()

    # Major ticks every 20, minor ticks every 5
    major_ticks = [200, 400, 600]  #np.arange(0, 600, 200)
    minor_ticks = [100, 200, 300, 400, 500, 600]  #np.arange(0, 600, 100)

    ax.set_yticks(major_ticks)
    ax.set_yticks(minor_ticks, minor=True)

    # And a corresponding grid
    ax.grid(which='both',
            color='black',
            linewidth=0.5,
            axis='y',
            linestyle=line_styles_default[3])  #[6])

    # Or if you want different settings for the grids:
    ax.grid(which='minor', axis='y', alpha=0.4)
    ax.grid(which='major', axis='y', alpha=0.8)

    # Achsen
    ax.spines['right'].set_visible(False)
    ax.spines['left'].set_visible(False)
    ax.spines['top'].set_visible(False)

    # Ticks
    plt.tick_params(
        axis='y',  # changes apply to the x-axis
        which='both',  # both major and minor ticks are affected
        bottom=False,  # ticks along the bottom edge are off
        top=False,  # ticks along the top edge are off
        left=False,
        right=False,
        labelbottom=False,
        labeltop=False,
        labelleft=True,
        labelright=False)  # labels along the bottom edge are off

    # --------
    # Legend
    # --------
    legend = plt.legend(
        #title="tt",
        ncol=2,
        prop={'size': 6},
        loc='upper center',
        bbox_to_anchor=(0.5, -0.1),
        frameon=False)
    legend.get_title().set_fontsize(8)

    if seperate_legend:
        basic_plot_functions.export_legend(
            legend, os.path.join(result_path,
                                 "{}__legend.pdf".format(fig_name)))
        legend.remove()

    # --------
    # Labeling
    # --------
    plt.ylabel("national fuel over time [in {}]".format(unit))
    #plt.xlabel("year")
    #plt.title("Title")

    plt.tight_layout()
    #plt.show()
    plt.savefig(os.path.join(result_path, fig_name))
    plt.close()

    write_data.write_list_to_txt(
        os.path.join(result_path, fig_name).replace(".pdf", ".txt"),
        statistics_to_print)
Exemple #2
0
def scenario_over_time(scenario_result_container,
                       sim_yrs,
                       fig_name,
                       result_path,
                       plot_points,
                       crit_smooth_line=True,
                       seperate_legend=False):
    """Plot peak over time
    """
    statistics_to_print = []

    fig = plt.figure(figsize=basic_plot_functions.cm2inch(10,
                                                          10))  #width, height

    ax = fig.add_subplot(1, 1, 1)

    for cnt_scenario, i in enumerate(scenario_result_container):
        scenario_name = i['scenario_name']
        national_peak = i['national_peak']

        # dataframe with national peak (columns= simulation year, row: Realisation)
        # Calculate quantiles
        quantile_95 = 0.95
        quantile_05 = 0.05

        try:
            color = colors[scenario_name]
            marker = marker_styles[scenario_name]
        except KeyError:
            color = list(colors.values())[cnt_scenario]

        try:
            marker = marker_styles[scenario_name]
        except KeyError:
            marker = list(marker_styles.values())[cnt_scenario]

        print("SCENARIO NAME {}  {}".format(scenario_name, color))

        # Calculate average across all weather scenarios
        mean_national_peak = national_peak.mean(axis=0)
        mean_national_peak_sim_yrs = copy.copy(mean_national_peak)

        statistics_to_print.append("scenario: {} values over years: {}".format(
            scenario_name, mean_national_peak_sim_yrs))

        # Standard deviation over all realisations
        df_q_05 = national_peak.quantile(quantile_05)
        df_q_95 = national_peak.quantile(quantile_95)

        statistics_to_print.append("scenario: {} df_q_05: {}".format(
            scenario_name, df_q_05))
        statistics_to_print.append("scenario: {} df_q_95: {}".format(
            scenario_name, df_q_95))

        # --------------------
        # Try to smooth lines
        # --------------------
        sim_yrs_smoothed = sim_yrs
        if crit_smooth_line:
            try:
                sim_yrs_smoothed, mean_national_peak_smoothed = basic_plot_functions.smooth_data(
                    sim_yrs, mean_national_peak, num=40000)
                _, df_q_05_smoothed = basic_plot_functions.smooth_data(
                    sim_yrs, df_q_05, num=40000)
                _, df_q_95_smoothed = basic_plot_functions.smooth_data(
                    sim_yrs, df_q_95, num=40000)

                mean_national_peak = pd.Series(mean_national_peak_smoothed,
                                               sim_yrs_smoothed)
                df_q_05 = pd.Series(df_q_05_smoothed, sim_yrs_smoothed)
                df_q_95 = pd.Series(df_q_95_smoothed, sim_yrs_smoothed)
            except:
                sim_yrs_smoothed = sim_yrs

        # -----------------------
        # Plot lines
        # ------------------------
        plt.plot(mean_national_peak,
                 label="{} (mean)".format(scenario_name),
                 color=color)

        # ------------------------
        # Plot markers
        # ------------------------
        if plot_points:
            plt.scatter(sim_yrs,
                        mean_national_peak_sim_yrs,
                        c=color,
                        marker=marker,
                        edgecolor='black',
                        linewidth=0.5,
                        s=15,
                        clip_on=False)  #do not clip points on axis

        # Plottin qunatilse and average scenario
        df_q_05.plot.line(color=color,
                          linestyle='--',
                          linewidth=0.1,
                          label='_nolegend_')  #, label="0.05")
        df_q_95.plot.line(color=color,
                          linestyle='--',
                          linewidth=0.1,
                          label='_nolegend_')  #, label="0.05")

        plt.fill_between(
            sim_yrs_smoothed,
            list(df_q_95),  #y1
            list(df_q_05),  #y2
            alpha=0.25,
            facecolor=color,
        )

    plt.xlim(2015, 2050)
    plt.ylim(0)

    # --------
    # Different style
    # --------
    ax = plt.gca()
    ax.grid(which='major', color='black', axis='y', linestyle='--')

    ax.spines['right'].set_visible(False)
    ax.spines['left'].set_visible(False)
    ax.spines['top'].set_visible(False)

    plt.tick_params(
        axis='y',  # changes apply to the x-axis
        which='both',  # both major and minor ticks are affected
        bottom=False,  # ticks along the bottom edge are off
        top=False,  # ticks along the top edge are off
        left=False,
        right=False,
        labelbottom=False,
        labeltop=False,
        labelleft=True,
        labelright=False)  # labels along the bottom edge are off

    # --------
    # Legend
    # --------
    legend = plt.legend(
        #title="tt",
        ncol=2,
        prop={'size': 10},
        loc='upper center',
        bbox_to_anchor=(0.5, -0.1),
        frameon=False)
    legend.get_title().set_fontsize(8)

    if seperate_legend:
        basic_plot_functions.export_legend(
            legend,
            os.path.join(result_path, "{}__{}__legend.pdf".format(fig_name)))
        legend.remove()

    # --------
    # Labeling
    # --------
    plt.ylabel("national peak demand (GW)")
    #plt.xlabel("year")
    #plt.title("Title")

    plt.tight_layout()

    plt.savefig(os.path.join(result_path, fig_name))
    plt.close()

    # Write info to txt
    write_data.write_list_to_txt(
        os.path.join(result_path, fig_name).replace(".pdf", ".txt"),
        statistics_to_print)
Exemple #3
0
def total_annual_demand(df_data_input,
                        path_shapefile_input,
                        regions,
                        pop_data,
                        simulation_yr_to_plot,
                        result_path,
                        fig_name,
                        field_to_plot,
                        unit='GW',
                        seperate_legend=True,
                        bins=False):
    """
    """
    if unit == 'GW':
        conversion_factor = 1
    elif unit == 'kW':
        conversion_factor = conversions.gwh_to_kwh(gwh=1)  #GW to KW
    elif unit == 'percentage':
        conversion_factor = 1
    else:
        raise Exception("Not defined unit")

    df_data_input = df_data_input * conversion_factor

    # Load uk shapefile
    uk_shapefile = gpd.read_file(path_shapefile_input)

    # Population of simulation year
    pop_sim_yr = pop_data[simulation_yr_to_plot]

    regions = list(df_data_input.columns)
    nr_of_regions = df_data_input.shape[1]
    nr_of_realisations = df_data_input.shape[0]

    # Mean over all realisations
    mean = df_data_input.mean(axis=0)

    # Mean normalized with population
    mean_norm_pop = df_data_input.mean(axis=0) / pop_sim_yr

    # Standard deviation over all realisations
    std_dev = df_data_input.std(axis=0)

    max_entry = df_data_input.max(axis=0)  #maximum entry for every hour
    min_entry = df_data_input.min(axis=0)  #maximum entry for every hour

    print("---- Calculate average per person")
    tot_person = sum(pop_sim_yr)
    #print(df_data_input.iloc[0])
    tot_demand = sum(df_data_input.iloc[0])
    print("TOT PERSON: " + str(tot_person))
    print("TOT PERSON: " + str(tot_demand))
    print('AVERAGE KW per Person " ' + str(tot_demand / tot_person))

    #print(df_data_input)
    regional_statistics_columns = ['name', 'mean', 'mean_norm_pop',
                                   'std_dev']  #
    #'diff_av_max',
    #'mean_pp',
    #'diff_av_max_pp',
    #'std_dev_average_every_h',
    #'std_dev_peak_h_norm_pop']

    df_stats = pd.DataFrame(columns=regional_statistics_columns)

    for region_name in regions:

        line_entry = [[
            str(region_name), mean[region_name], mean_norm_pop[region_name],
            std_dev[region_name]
            #diff_av_max,
            #mean_peak_h_pp,
            #diff_av_max_pp,
            #std_dev_average_every_h,
            #std_dev_peak_h_norm_pop
        ]]

        line_df = pd.DataFrame(line_entry, columns=regional_statistics_columns)

        df_stats = df_stats.append(line_df)

    # ---------------
    # Create spatial maps
    # http://darribas.org/gds15/content/labs/lab_03.html
    # http://nbviewer.jupyter.org/gist/jorisvandenbossche/57d392c085901eb4981054402b37b6b1
    # ---------------
    # Merge stats to geopanda
    shp_gdp_merged = uk_shapefile.merge(df_stats, on='name')

    # Assign projection
    crs = {'init': 'epsg:27700'}  #27700: OSGB_1936_British_National_Grid
    uk_gdf = gpd.GeoDataFrame(shp_gdp_merged, crs=crs)
    ax = uk_gdf.plot()

    # Assign bin colors according to defined cmap and whether
    # plot with min_max values or only min/max values
    #bin_values = [0, 0.0025, 0.005, 0.0075, 0.01]
    nr_of_intervals = 6

    if bins:
        bin_values = bins
    else:
        bin_values = result_mapping.get_reasonable_bin_values_II(
            data_to_plot=list(uk_gdf[field_to_plot]),
            nr_of_intervals=nr_of_intervals)
    #print("field_to_plot: {} BINS: {}".format(field_to_plot, bin_values))

    uk_gdf, cmap_rgb_colors, color_zero, min_value, max_value = fig_p2_weather_val.user_defined_bin_classification(
        uk_gdf, field_to_plot, bin_values=bin_values)

    # plot with face color attribute
    uk_gdf.plot(ax=ax,
                facecolor=uk_gdf['bin_color'],
                edgecolor='black',
                linewidth=0.5)

    # TODO IMRPVE: MAKE CORRECT ONE FOR NEW PROCESSING
    legend_handles = result_mapping.get_legend_handles(bin_values[1:-1],
                                                       cmap_rgb_colors,
                                                       color_zero, min_value,
                                                       max_value)

    legend = plt.legend(handles=legend_handles,
                        title="Unit: {} field: {}".format(unit, field_to_plot),
                        prop={'size': 8},
                        loc='upper center',
                        bbox_to_anchor=(0.5, -0.05),
                        frameon=False)

    if seperate_legend:
        basic_plot_functions.export_legend(
            legend, os.path.join(result_path,
                                 "{}__legend.pdf".format(fig_name)))
        legend.remove()

    # Remove coordinates from figure
    ax.set_yticklabels([])
    ax.set_xticklabels([])

    legend.get_title().set_fontsize(8)

    # PLot bins on plot
    '''plt.text(
        0,
        -20,
        bin_values[:-1],
        fontsize=8)'''

    # --------
    # Labeling
    # --------
    #plt.title("Peak demand over time")
    plt.tight_layout()
    #plt.show()
    plt.savefig(os.path.join(result_path, fig_name))
    plt.close()
Exemple #4
0
def plotting_weather_data(path):
    """

    Things to plot

    - annual t_min of all realizations
    - annual t_max of all realizations

    - annual maximum t_max
    - annual minimum t_min
    """
    sim_yrs = range(2015, 2051, 5)
    weather_reationzations = ["NF{}".format(i) for i in range(1, 101, 1)]

    container_weather_stations = {}
    container_temp_data = {}

    # All used weather stations from model run
    used_stations = [
        'station_id_253', 'station_id_252', 'station_id_253', 'station_id_252',
        'station_id_252', 'station_id_328', 'station_id_329', 'station_id_305',
        'station_id_282', 'station_id_335', 'station_id_335', 'station_id_359',
        'station_id_358', 'station_id_309', 'station_id_388', 'station_id_418',
        'station_id_420', 'station_id_389', 'station_id_433', 'station_id_385',
        'station_id_374', 'station_id_481', 'station_id_481', 'station_id_480',
        'station_id_466', 'station_id_531', 'station_id_532', 'station_id_535',
        'station_id_535', 'station_id_484', 'station_id_421', 'station_id_472',
        'station_id_526', 'station_id_525', 'station_id_526', 'station_id_504',
        'station_id_503', 'station_id_504', 'station_id_505', 'station_id_504',
        'station_id_504', 'station_id_455', 'station_id_548', 'station_id_546',
        'station_id_537', 'station_id_545', 'station_id_236', 'station_id_353',
        'station_id_352', 'station_id_384', 'station_id_510', 'station_id_527',
        'station_id_550', 'station_id_501', 'station_id_456', 'station_id_472',
        'station_id_201', 'station_id_470', 'station_id_487', 'station_id_505',
        'station_id_486', 'station_id_457', 'station_id_533', 'station_id_458',
        'station_id_441', 'station_id_440', 'station_id_473', 'station_id_217',
        'station_id_247', 'station_id_199', 'station_id_232', 'station_id_234',
        'station_id_478', 'station_id_248', 'station_id_388', 'station_id_377',
        'station_id_376', 'station_id_376', 'station_id_388', 'station_id_354',
        'station_id_376', 'station_id_388', 'station_id_515', 'station_id_514',
        'station_id_514', 'station_id_531', 'station_id_532', 'station_id_494',
        'station_id_512', 'station_id_535', 'station_id_535', 'station_id_517',
        'station_id_534', 'station_id_533', 'station_id_549', 'station_id_549',
        'station_id_550', 'station_id_549', 'station_id_508', 'station_id_490',
        'station_id_507', 'station_id_526', 'station_id_508', 'station_id_491',
        'station_id_507', 'station_id_489', 'station_id_509', 'station_id_526',
        'station_id_545', 'station_id_492', 'station_id_490', 'station_id_451',
        'station_id_467', 'station_id_450', 'station_id_451', 'station_id_466',
        'station_id_451', 'station_id_521', 'station_id_538', 'station_id_537',
        'station_id_537', 'station_id_522', 'station_id_546', 'station_id_536',
        'station_id_522', 'station_id_520', 'station_id_537', 'station_id_488',
        'station_id_487', 'station_id_488', 'station_id_472', 'station_id_487',
        'station_id_487', 'station_id_551', 'station_id_544', 'station_id_419',
        'station_id_525', 'station_id_552', 'station_id_525', 'station_id_543',
        'station_id_542', 'station_id_552', 'station_id_543', 'station_id_544',
        'station_id_542', 'station_id_542', 'station_id_306', 'station_id_305',
        'station_id_282', 'station_id_306', 'station_id_406', 'station_id_264',
        'station_id_306', 'station_id_283', 'station_id_284', 'station_id_306',
        'station_id_305', 'station_id_304', 'station_id_283', 'station_id_418',
        'station_id_403', 'station_id_419', 'station_id_418', 'station_id_403',
        'station_id_402', 'station_id_392', 'station_id_379', 'station_id_391',
        'station_id_422', 'station_id_404', 'station_id_379', 'station_id_443',
        'station_id_444', 'station_id_445', 'station_id_423', 'station_id_469',
        'station_id_425', 'station_id_444', 'station_id_461', 'station_id_438',
        'station_id_437', 'station_id_439', 'station_id_438', 'station_id_455',
        'station_id_454', 'station_id_438', 'station_id_284', 'station_id_268',
        'station_id_286', 'station_id_266', 'station_id_288', 'station_id_270',
        'station_id_333', 'station_id_389', 'station_id_378', 'station_id_389',
        'station_id_389', 'station_id_377', 'station_id_390', 'station_id_403',
        'station_id_469', 'station_id_485', 'station_id_484', 'station_id_469',
        'station_id_499', 'station_id_498', 'station_id_516', 'station_id_497',
        'station_id_479', 'station_id_400', 'station_id_387', 'station_id_401',
        'station_id_374', 'station_id_400', 'station_id_386', 'station_id_375',
        'station_id_401', 'station_id_491', 'station_id_459', 'station_id_492',
        'station_id_476', 'station_id_475', 'station_id_477', 'station_id_462',
        'station_id_523', 'station_id_523', 'station_id_522', 'station_id_523',
        'station_id_523', 'station_id_523', 'station_id_505', 'station_id_522',
        'station_id_541', 'station_id_539', 'station_id_523', 'station_id_417',
        'station_id_417', 'station_id_437', 'station_id_436', 'station_id_436',
        'station_id_548', 'station_id_547', 'station_id_488', 'station_id_539',
        'station_id_540', 'station_id_540', 'station_id_540', 'station_id_547',
        'station_id_416', 'station_id_434', 'station_id_435', 'station_id_434',
        'station_id_434', 'station_id_415', 'station_id_488', 'station_id_488',
        'station_id_489', 'station_id_329', 'station_id_330', 'station_id_330',
        'station_id_330', 'station_id_330', 'station_id_329', 'station_id_354',
        'station_id_330', 'station_id_329', 'station_id_329', 'station_id_328',
        'station_id_328', 'station_id_328', 'station_id_304', 'station_id_327',
        'station_id_331', 'station_id_357', 'station_id_356', 'station_id_355',
        'station_id_221', 'station_id_221', 'station_id_221', 'station_id_237',
        'station_id_416', 'station_id_417', 'station_id_416', 'station_id_416',
        'station_id_417', 'station_id_400', 'station_id_400', 'station_id_307',
        'station_id_307', 'station_id_331', 'station_id_308', 'station_id_332',
        'station_id_221', 'station_id_506', 'station_id_507', 'station_id_506',
        'station_id_525', 'station_id_506', 'station_id_524', 'station_id_506',
        'station_id_524', 'station_id_505', 'station_id_506', 'station_id_524',
        'station_id_506', 'station_id_506', 'station_id_506', 'station_id_505',
        'station_id_507', 'station_id_505', 'station_id_505', 'station_id_506',
        'station_id_506', 'station_id_523', 'station_id_524', 'station_id_524',
        'station_id_524', 'station_id_506', 'station_id_507', 'station_id_505',
        'station_id_524', 'station_id_524', 'station_id_506', 'station_id_506',
        'station_id_524', 'station_id_506', 'station_id_172', 'station_id_193',
        'station_id_173', 'station_id_133', 'station_id_130', 'station_id_168',
        'station_id_194', 'station_id_152', 'station_id_170', 'station_id_214',
        'station_id_195', 'station_id_103', 'station_id_124', 'station_id_110',
        'station_id_176', 'station_id_136', 'station_id_125', 'station_id_121',
        'station_id_9', 'station_id_111', 'station_id_105', 'station_id_36',
        'station_id_108', 'station_id_52', 'station_id_119', 'station_id_4',
        'station_id_94', 'station_id_159', 'station_id_137', 'station_id_102',
        'station_id_77', 'station_id_303', 'station_id_2', 'station_id_154',
        'station_id_64', 'station_id_89', 'station_id_124', 'station_id_109',
        'station_id_109', 'station_id_123', 'station_id_86', 'station_id_105',
        'station_id_110', 'station_id_110', 'station_id_448', 'station_id_348',
        'station_id_349', 'station_id_350', 'station_id_351', 'station_id_372',
        'station_id_394', 'station_id_449', 'station_id_464', 'station_id_407',
        'station_id_428', 'station_id_446', 'station_id_446', 'station_id_463',
        'station_id_463', 'station_id_464', 'station_id_447', 'station_id_448',
        'station_id_448', 'station_id_396', 'station_id_447'
    ]

    # Load full data
    for weather_realisation in weather_reationzations:
        print("weather_realisation: " + str(weather_realisation))
        path_weather_data = path

        weather_stations, temp_data = data_loader.load_temp_data(
            {},
            sim_yrs=sim_yrs,
            weather_realisation=weather_realisation,
            path_weather_data=path_weather_data,
            same_base_year_weather=False,
            crit_temp_min_max=True,
            load_np=False,
            load_parquet=False,
            load_csv=True)

        # Load only data from selected weather stations
        temp_data_used = {}
        for year in sim_yrs:
            temp_data_used[year] = {}
            all_station_data = temp_data[year].keys()
            for station in all_station_data:
                if station in used_stations:
                    temp_data_used[year][station] = temp_data[year][station]

        container_weather_stations[weather_realisation] = weather_stations
        container_temp_data[weather_realisation] = temp_data_used

    # Create plot with daily min
    print("... creating min max plot")
    t_min_average_every_day = []
    t_max_average_every_day = []
    t_min_min_every_day = []
    t_max_max_every_day = []
    std_dev_t_min = []
    std_dev_t_max = []
    std_dev_t_min_min = []
    std_dev_t_max_max = []

    for year in sim_yrs:

        for realization in container_weather_stations.keys():
            t_min_average_stations = []
            t_max_average_stations = []
            t_min_min_average_stations = []
            t_max_max_average_stations = []
            stations_data = container_temp_data[realization][year]
            for station in stations_data.keys():
                t_min_annual_average = np.average(
                    stations_data[station]['t_min'])
                t_max_annual_average = np.average(
                    stations_data[station]['t_max'])
                t_min_min_stations = np.min(stations_data[station]['t_min'])
                t_max_max_stations = np.max(stations_data[station]['t_max'])

                t_min_average_stations.append(
                    t_min_annual_average)  #average cross all stations
                t_max_average_stations.append(
                    t_max_annual_average)  #average cross all stations
                t_min_min_average_stations.append(t_min_min_stations)
                t_max_max_average_stations.append(t_max_max_stations)

        av_t_min = np.average(
            t_min_average_stations)  #average across all realizations
        av_t_max = np.average(
            t_max_average_stations)  #average across all realizations
        av_min_t_min = np.average(
            t_min_min_average_stations)  #average across all realizations
        av_max_t_max = np.average(
            t_max_max_average_stations)  #average across all realizations

        std_t_min = np.std(t_min_average_stations)
        std_t_max = np.std(t_max_average_stations)
        std_t_min_min = np.std(t_min_min_average_stations)
        std_t_max_max = np.std(t_max_max_average_stations)

        t_min_average_every_day.append(av_t_min)
        t_max_average_every_day.append(av_t_max)
        t_min_min_every_day.append(av_min_t_min)
        t_max_max_every_day.append(av_max_t_max)

        std_dev_t_min.append(std_t_min)
        std_dev_t_max.append(std_t_max)
        std_dev_t_min_min.append(std_t_min_min)
        std_dev_t_max_max.append(std_t_max_max)

    # Plot variability
    fig = plt.figure(figsize=basic_plot_functions.cm2inch(9,
                                                          6))  #width, height

    colors = {
        't_min': 'steelblue',
        't_max': 'tomato',
        't_min_min': 'peru',
        't_max_max': 'r'
    }

    # plot
    plt.plot(sim_yrs,
             t_min_average_every_day,
             color=colors['t_min'],
             label="t_min")
    plt.plot(sim_yrs,
             t_max_average_every_day,
             color=colors['t_max'],
             label="t_max")
    plt.plot(sim_yrs,
             t_min_min_every_day,
             color=colors['t_min_min'],
             label="t_min_min")
    plt.plot(sim_yrs,
             t_max_max_every_day,
             color=colors['t_max_max'],
             label="t_max_max")

    # Variations
    plt.fill_between(
        sim_yrs,
        list(
            np.array(t_min_average_every_day) - (2 * np.array(std_dev_t_min))),
        list(
            np.array(t_min_average_every_day) + (2 * np.array(std_dev_t_min))),
        color=colors['t_min'],
        alpha=0.25)

    plt.fill_between(
        sim_yrs,
        list(
            np.array(t_max_average_every_day) - (2 * np.array(std_dev_t_max))),
        list(
            np.array(t_max_average_every_day) + (2 * np.array(std_dev_t_max))),
        color=colors['t_max'],
        alpha=0.25)

    plt.fill_between(
        sim_yrs,
        list(
            np.array(t_min_min_every_day) - (2 * np.array(std_dev_t_min_min))),
        list(
            np.array(t_min_min_every_day) + (2 * np.array(std_dev_t_min_min))),
        color=colors['t_min_min'],
        alpha=0.25)

    plt.fill_between(
        sim_yrs,
        list(
            np.array(t_max_max_every_day) - (2 * np.array(std_dev_t_max_max))),
        list(
            np.array(t_max_max_every_day) + (2 * np.array(std_dev_t_max_max))),
        color=colors['t_max_max'],
        alpha=0.25)

    # Legend
    legend = plt.legend(ncol=2,
                        prop={'size': 10},
                        loc='upper center',
                        bbox_to_anchor=(0.5, -0.1),
                        frameon=False)
    legend.get_title().set_fontsize(8)

    result_path = "C:/_scrap/"
    seperate_legend = True
    if seperate_legend:
        basic_plot_functions.export_legend(
            legend,
            os.path.join(result_path, "{}__legend.pdf".format(result_path)))
        legend.remove()

    plt.legend(ncol=2)
    plt.xlabel("Year")
    plt.ylabel("Temperature (°C)")

    plt.tight_layout()
    plt.margins(x=0)

    fig.savefig(os.path.join(result_path, "test.pdf"))
Exemple #5
0
def scenario_over_time(
        scenario_result_container,
        field_name,
        sim_yrs,
        fig_name,
        result_path,
        plot_points,
        crit_smooth_line=True,
        seperate_legend=False
    ):
    """Plot peak over time
    """
    statistics_to_print = []

    fig = plt.figure(figsize=basic_plot_functions.cm2inch(10, 10)) #width, height

    ax = fig.add_subplot(1, 1, 1)

    for cnt_scenario, i in enumerate(scenario_result_container):
        scenario_name = i['scenario_name']
        national_peak = i[field_name]

        # dataframe with national peak (columns= simulation year, row: Realisation) 
        # Calculate quantiles
        #quantile_95 = 0.68 #0.95 #0.68
        #quantile_05 = 0.32 #0.05 #0.32

        try:
            color = colors[scenario_name]
            marker = marker_styles[scenario_name]
        except KeyError:
            color = list(colors.values())[cnt_scenario]

        try:
            marker = marker_styles[scenario_name]
        except KeyError:
            marker = list(marker_styles.values())[cnt_scenario]

        #print("SCENARIO NAME {}  {}".format(scenario_name, color))

        # Calculate average across all weather scenarios
        mean_national_peak = national_peak.mean(axis=0)

        mean_national_peak_sim_yrs = copy.copy(mean_national_peak)

        statistics_to_print.append("scenario: {} values over years: {}".format(scenario_name, mean_national_peak_sim_yrs))

        # Standard deviation over all realisations
        #df_q_05 = national_peak.quantile(quantile_05)
        #df_q_95 = national_peak.quantile(quantile_95)

        # Number of sigma
        nr_of_sigma = 1
        std_dev = national_peak.std(axis=0)
        two_std_line_pos = mean_national_peak + (nr_of_sigma * std_dev)
        two_std_line_neg = mean_national_peak - (nr_of_sigma * std_dev)

        # Maximum and minium values
        max_values = national_peak.max()
        min_values = national_peak.min()
        median_values = national_peak.median()

        statistics_to_print.append("scenario: {} two_sigma_pos: {}".format(scenario_name, two_std_line_pos))
        statistics_to_print.append("scenario: {} two_sigma_neg: {}".format(scenario_name, two_std_line_neg))
        statistics_to_print.append("--------min-------------- {}".format(scenario_name))
        statistics_to_print.append("{}".format(min_values)) #Get minimum value for every simulation year of all realizations
        statistics_to_print.append("--------max-------------- {}".format(scenario_name))
        statistics_to_print.append("{}".format(max_values))
        statistics_to_print.append("--------median_-------------- {}".format(scenario_name))
        statistics_to_print.append("{}".format(median_values))
        # --------------------
        # Try to smooth lines
        # --------------------
        sim_yrs_smoothed = sim_yrs
        if crit_smooth_line:
            try:
                sim_yrs_smoothed, mean_national_peak_smoothed = basic_plot_functions.smooth_data(sim_yrs, mean_national_peak, num=40000)
                #_, df_q_05_smoothed = basic_plot_functions.smooth_data(sim_yrs, df_q_05, num=40000)
                #_, df_q_95_smoothed = basic_plot_functions.smooth_data(sim_yrs, df_q_95, num=40000)
                _, two_std_line_pos_smoothed = basic_plot_functions.smooth_data(sim_yrs, two_std_line_pos, num=40000)
                _, two_std_line_neg_smoothed = basic_plot_functions.smooth_data(sim_yrs, two_std_line_neg, num=40000)
                _, max_values_smoothed = basic_plot_functions.smooth_data(sim_yrs, max_values, num=40000)
                _, min_values_smoothed = basic_plot_functions.smooth_data(sim_yrs, min_values, num=40000)
                mean_national_peak = pd.Series(mean_national_peak_smoothed, sim_yrs_smoothed)
                #df_q_05 = pd.Series(df_q_05_smoothed, sim_yrs_smoothed)
                #df_q_95 = pd.Series(df_q_95_smoothed, sim_yrs_smoothed)
                two_std_line_pos = pd.Series(two_std_line_pos_smoothed, sim_yrs_smoothed)
                two_std_line_neg = pd.Series(two_std_line_neg_smoothed, sim_yrs_smoothed)

                max_values = pd.Series(max_values_smoothed, sim_yrs_smoothed).values
                min_values = pd.Series(min_values_smoothed, sim_yrs_smoothed).values
            except:
                sim_yrs_smoothed = sim_yrs

        # -----------------------
        # Plot lines
        # ------------------------
        plt.plot(
            mean_national_peak,
            label="{} (mean)".format(scenario_name),
            zorder=1,
            color=color)

        # ------------------------
        # Plot markers
        # ------------------------
        if plot_points:
            plt.scatter(
                sim_yrs,
                mean_national_peak_sim_yrs,
                c=color,
                marker=marker,
                edgecolor='black',
                linewidth=0.5,
                zorder=2,
                s=15,
                clip_on=False) #do not clip points on axis

        # ------------------
        # Start with uncertainty one model step later (=> 2020)
        # ------------------
        start_yr_uncertainty = 2020

        if crit_smooth_line:
            #Get position in array of start year uncertainty
            pos_unc_yr = len(np.where(sim_yrs_smoothed < start_yr_uncertainty)[0])
        else:
            pos_unc_yr = 0
            for cnt, year in enumerate(sim_yrs_smoothed):
                if year == start_yr_uncertainty:
                    pos_unc_yr = cnt

        # select based on index which is year
        #df_q_05 = df_q_05.loc[start_yr_uncertainty:]
        #df_q_95 = df_q_95.loc[start_yr_uncertainty:]
        two_std_line_pos = two_std_line_pos.loc[start_yr_uncertainty:]
        two_std_line_neg = two_std_line_neg.loc[start_yr_uncertainty:]
        sim_yrs_smoothed = sim_yrs_smoothed[pos_unc_yr:]

        min_values = min_values[pos_unc_yr:] #min_values.loc[start_yr_uncertainty:]
        max_values = max_values[pos_unc_yr:] #max_values.loc[start_yr_uncertainty:]

        # --------------------------------------
        # Plottin qunatilse and average scenario
        # --------------------------------------
        #df_q_05.plot.line(color=color, linestyle='--', linewidth=0.1, label='_nolegend_')
        #df_q_95.plot.line(color=color, linestyle='--', linewidth=0.1, label='_nolegend_')

        # Plot standard deviation
        #two_std_line_pos.plot.line(color=color, linestyle='--', linewidth=0.1, label='_nolegend_')
        #two_std_line_neg.plot.line(color=color, linestyle='--', linewidth=0.1, label='_nolegend_')

        # plot min and maximum values
        plt.plot(sim_yrs_smoothed, min_values, color=color, linestyle='--', linewidth=0.3, label='_nolegend_')
        plt.plot(sim_yrs_smoothed, max_values, color=color, linestyle='--', linewidth=0.3, label='_nolegend_')

        plt.fill_between(
            sim_yrs_smoothed,
            list(two_std_line_pos),
            list(two_std_line_neg),
            alpha=0.25,
            facecolor=color)

    plt.xlim(2015, 2050)
    plt.ylim(0)

    # --------
    # Different style
    # --------
    ax = plt.gca()
    ax.grid(which='major', color='black', axis='y', linestyle='--')

    ax.spines['right'].set_visible(False)
    ax.spines['left'].set_visible(False)
    ax.spines['top'].set_visible(False)

    plt.tick_params(
        axis='y',          # changes apply to the x-axis
        which='both',      # both major and minor ticks are affected
        bottom=False,      # ticks along the bottom edge are off
        top=False,         # ticks along the top edge are off
        left=False,
        right=False,
        labelbottom=False,
        labeltop=False,
        labelleft=True,
        labelright=False) # labels along the bottom edge are off

    # --------
    # Legend
    # --------
    legend = plt.legend(
        ncol=2,
        prop={'size': 10},
        loc='upper center',
        bbox_to_anchor=(0.5, -0.1),
        frameon=False)
    legend.get_title().set_fontsize(8)

    if seperate_legend:
        basic_plot_functions.export_legend(
            legend,
            os.path.join(result_path, "{}__legend.pdf".format(fig_name[:-4])))
        legend.remove()

    # --------
    # Labeling
    # --------
    plt.ylabel("national peak demand (GW)")
    plt.tight_layout()
    plt.savefig(os.path.join(result_path, fig_name))
    plt.close()

    # Write info to txt
    write_data.write_list_to_txt(
        os.path.join(result_path, fig_name).replace(".pdf", ".txt"),
        statistics_to_print)
Exemple #6
0
def plot_4_cross_map_OLD(
        cmap_rgb_colors,
        reclassified,
        result_path,
        path_shapefile_input,
        threshold=None,
        seperate_legend=False
    ):
    """Plot classifed 4 cross map
    """
    # Load uk shapefile
    uk_shapefile = gpd.read_file(path_shapefile_input)

    # Merge stats to geopanda
    shp_gdp_merged = uk_shapefile.merge(reclassified, on='name')

    # Assign projection
    crs = {'init': 'epsg:27700'} #27700: OSGB_1936_British_National_Grid
    uk_gdf = gpd.GeoDataFrame(shp_gdp_merged, crs=crs)
    ax = uk_gdf.plot()

    uk_gdf['facecolor'] = 'white'

    for region in uk_gdf.index:
        reclassified_value = uk_gdf.loc[region]['reclassified']
        uk_gdf.loc[region, 'facecolor'] = cmap_rgb_colors[reclassified_value]

    # plot with face color attribute
    uk_gdf.plot(ax=ax, facecolor=uk_gdf['facecolor'], edgecolor='black', linewidth=0.1)

    legend_handles = [
        mpatches.Patch(color=cmap_rgb_colors[0], label=str("+- thr {}".format(threshold))),
        mpatches.Patch(color=cmap_rgb_colors[1], label=str("a")),
        mpatches.Patch(color=cmap_rgb_colors[2], label=str("b")),
        mpatches.Patch(color=cmap_rgb_colors[3], label=str("c")),
        mpatches.Patch(color=cmap_rgb_colors[4], label=str("d"))]

    legend = plt.legend(
        handles=legend_handles,
        #title="test",
        prop={'size': 8},
        loc='upper center',
        bbox_to_anchor=(0.5, -0.05),
        frameon=False)

    if seperate_legend:
        basic_plot_functions.export_legend(
            legend,
            os.path.join(result_path, "{}__legend.pdf".format(result_path)))
        legend.remove()

    # Remove coordinates from figure
    ax.set_yticklabels([])
    ax.set_xticklabels([])
    legend.get_title().set_fontsize(8)

    # --------
    # Labeling
    # --------
    plt.tight_layout()
    plt.savefig(os.path.join(result_path))
    plt.close()
Exemple #7
0
def plot_4_cross_map(
        cmap_rgb_colors,
        reclassified,
        result_path,
        path_shapefile_input,
        threshold=None,
        seperate_legend=False
    ):
    """Plot classifed 4 cross map
    """
    # --------------
    # Use Cartopy to plot geometreis with reclassified faceolor
    # --------------
    plt.figure(figsize=basic_plot_functions.cm2inch(10, 10)) #, dpi=150)
    proj = ccrs.OSGB() #'epsg:27700'
    ax = plt.axes(projection=proj)
    ax.outline_patch.set_visible(False)

    # set up a dict to hold geometries keyed by our key
    geoms_by_key = defaultdict(list)

    # for each records, pick out our key's value from the record
    # and store the geometry in the relevant list under geoms_by_key
    for record in shpreader.Reader(path_shapefile_input).records():
        region_name = record.attributes['name']
        geoms_by_key[region_name].append(record.geometry)

    # now we have all the geometries in lists for each value of our key
    # add them to the axis, using the relevant color as facecolor
    for key, geoms in geoms_by_key.items():
        region_reclassified_value = reclassified.loc[key]['reclassified']
        facecolor = cmap_rgb_colors[region_reclassified_value]
        ax.add_geometries(geoms, crs=proj, edgecolor='black', facecolor=facecolor, linewidth=0.1)

    # --------------
    # Create Legend
    # --------------
    legend_handles = [
        mpatches.Patch(color=cmap_rgb_colors[0], label=str("+- threshold {}".format(threshold))),
        mpatches.Patch(color=cmap_rgb_colors[1], label=str("a")),
        mpatches.Patch(color=cmap_rgb_colors[2], label=str("b")),
        mpatches.Patch(color=cmap_rgb_colors[3], label=str("c")),
        mpatches.Patch(color=cmap_rgb_colors[4], label=str("d"))]

    legend = plt.legend(
        handles=legend_handles,
        #title="test",
        prop={'size': 8},
        loc='upper center',
        bbox_to_anchor=(0.5, -0.05),
        frameon=False)

    if seperate_legend:
        basic_plot_functions.export_legend(
            legend,
            os.path.join(result_path, "{}__legend.pdf".format(result_path)))
        legend.remove()

    # Remove coordinates from figure
    ax.set_yticklabels([])
    ax.set_xticklabels([])
    legend.get_title().set_fontsize(8)

    # --------
    # Labeling
    # --------
    plt.tight_layout()
    plt.savefig(os.path.join(result_path))
    plt.close()