def run_single_classifier_experiment(strageties, expt_name, dataset_name,
                                     run_name):

    for strat in strageties:
        agent_config[strat] = STRATS[strat]

    env_config = {
        'env_id': 'Flex-v1',
        'dataset_name': dataset_name,
        'episode_length': 0,
        'flex_size': 0.02,
        'max_flex_time': 6,
        'relax_time': 0
    }

    expt_path = os.path.join(os.getcwd(), 'results', expt_name)

    paths = energy_py.make_paths(expt_path, run_name=run_name)
    logger = energy_py.make_logger(paths, 'master')

    energy_py.experiment(agent_config=agent_config,
                         env_config=env_config,
                         total_steps=total_steps,
                         paths=paths,
                         seed=args.seed)
Exemple #2
0
def test_cartpole_expt():

    env_config = {'env_id': 'cartpole-v0'}

    experiment(agent_config=AGENT_CONFIG,
               env_config=env_config,
               total_steps=TOTAL_STEPS,
               paths=PATHS)
Exemple #3
0
def test_battery_expt():

    env_config = {'env_id': 'battery',
                  'dataset': 'example',
                  'episode_length': 10,
                  'episode_sample': 'random',
                  'initial_charge': 'random'}

    experiment(agent_config=AGENT_CONFIG,
               env_config=env_config,
               total_steps=TOTAL_STEPS,
               paths=PATHS)
Exemple #4
0
def test_cartpole_expt():

    env = CartPoleEnv()

    agent, env, sess = experiment(agent=DQN,
                                  agent_config=AGENT_CONFIG,
                                  env=env,
                                  total_steps=TOTAL_STEPS,
                                  data_path=DATA_PATH,
                                  results_path=RESULTS_PATH)
Exemple #5
0
def test_flex_expt():

    env = FlexEnv

    env_config = {'episode_length': 10, 'episode_random': True}

    agent, env, sess = experiment(agent=DQN,
                                  agent_config=AGENT_CONFIG,
                                  env=env,
                                  env_config=env_config,
                                  total_steps=TOTAL_STEPS,
                                  data_path=DATA_PATH,
                                  results_path=RESULTS_PATH)
Exemple #6
0
def test_battery_expt():

    env = BatteryEnv

    env_config = {
        'episode_length': 10,
        'episode_random': True,
        'initial_charge': 'random'
    }

    agent, env, sess = experiment(agent=DQN,
                                  agent_config=AGENT_CONFIG,
                                  env=env,
                                  env_config=env_config,
                                  total_steps=TOTAL_STEPS,
                                  data_path=DATA_PATH,
                                  results_path=RESULTS_PATH)
Exemple #7
0
import logging
import os

from energy_py import experiment
from energy_py.agents import ClassifierAgent
from energy_py.envs import FlexEnv

if __name__ == '__main__':
    total_steps = 1e6

    data_path = os.getcwd() + '/classifier_deterministic/'
    results_path = os.getcwd() + '/results/classifier/'

    env_config = {
        'episode_length': 0,
        'episode_random': False,
        'data_path': data_path,
        'flex_effy': 1.0,
        'flex_size': 0.05
    }

    agent_config = {'discount': 0.9}
    total_steps = 10
    env = FlexEnv
    agent = ClassifierAgent

    agent, env, sess = experiment(agent, agent_config, env, total_steps,
                                  data_path, results_path, env_config)
    total_steps = 5e5
    agent = DQN
    agent_config = {
        'discount': 0.97,
        'tau': 0.001,
        'batch_size': 32,
        'layers': (10, 10, 10),
        'learning_rate': 0.0001,
        'epsilon_decay_fraction': 0.3,
        'memory_fraction': 0.1,
        'memory_type': 'deque',
        'double_q': True,
        'total_steps': total_steps,
        'target_processor': 'normalizer',
        'observation_processor': 'standardizer'
    }

    env = CartPoleEnv()

    data_path = os.getcwd() + '/gym/'
    results_path = os.getcwd() + '/results/cartpole/'

    agent, env, sess = experiment(agent=DQN,
                                  agent_config=agent_config,
                                  env=env,
                                  total_steps=total_steps,
                                  data_path=data_path,
                                  results_path=results_path,
                                  run_name='DDQN')
Exemple #9
0
    env_config = {'env_id': 'flex-v0',
                  'dataset': 'tempus', 
                  'flex_size': 0.5,
                  'flex_time': 1,
                  'relax_time': 0,
                  'episode_length': 2016,
                  'episode_sample': 'random'}

    # env_config = {'env_id': 'CartPole'}

    # env_config = {'env_id': 'Battery',
    #               'dataset_name': args.dataset,
    #               'episode_sample': 'random'}

    # env_config = {'env_id': 'Flex-v0',
    #               'dataset_name': args.dataset,
    #               'episode_sample': 'random'}

    expt_path = os.path.join(os.getcwd(),
                             'results',
                             args.expt_name)

    paths = make_paths(expt_path, run_name=args.run_name)
    logger = make_logger(paths, 'master')

    experiment(agent_config=agent_config,
               env_config=env_config,
               total_steps=TOTAL_STEPS,
               paths=paths,
               seed=args.seed)