Exemple #1
0
    def __init__(self, measure, beta, kappa, normed, coords, check_input):

        if 'efpm' in measure:
            raise ValueError('\'efpm\' no longer supported')
        if 'efm' in measure:
            raise ValueError('\'efm\' no longer supported')

        # store measure object
        self._measure = Measure(measure, beta, kappa, normed, coords, check_input)
Exemple #2
0
    def __init__(self, kwargs):

        kwargs_check('EFBase', kwargs, allowed=MEASURE_KWARGS)
        self._measure = Measure(kwargs.pop('measure'), **kwargs)
Exemple #3
0
class EFPBase(with_metaclass(ABCMeta, object)):
    def __init__(self, measure, beta, kappa, normed, coords, check_input):

        if 'efpm' in measure:
            raise ValueError('\'efpm\' no longer supported')
        if 'efm' in measure:
            raise ValueError('\'efm\' no longer supported')

        # store measure object
        self._measure = Measure(measure, beta, kappa, normed, coords,
                                check_input)

    def get_zs_thetas_dict(self, event, zs, thetas):
        if event is not None:
            zs, thetas = self._measure.evaluate(event)
        elif zs is None or thetas is None:
            raise TypeError(
                'if event is None then zs and/or thetas cannot also be None')
        return zs, {w: thetas**w for w in self._weight_set}

    @abstractproperty
    def _weight_set(self):
        pass

    @property
    def measure(self):
        return self._measure.measure

    @property
    def beta(self):
        return self._measure.beta

    @property
    def kappa(self):
        return self._measure.kappa

    @property
    def normed(self):
        return self._measure.normed

    @property
    def coords(self):
        return self._measure.coords

    @property
    def check_input(self):
        return self._measure.check_input

    def _batch_compute_func(self, event):
        return self.compute(event, batch_call=True)

    @abstractmethod
    def compute(self, *args, **kwargs):
        pass

    def batch_compute(self, events, n_jobs=None):
        """Computes the value of the EFP on several events.

        **Arguments**

        - **events** : array_like or `fastjet.PseudoJet`
            - The events as an array of arrays of particles in coordinates
            matching those anticipated by `coords`.
        - **n_jobs** : _int_ or `None`
            - The number of worker processes to use. A value of `None` will
            use as many processes as there are CPUs on the machine.

        **Returns**

        - _1-d numpy.ndarray_
            - A vector of the EFP value for each event.
        """

        if n_jobs is None:
            n_jobs = multiprocessing.cpu_count() or 1
        chunksize = max(1, len(events) // n_jobs)

        # setup processor pool
        with create_pool(n_jobs) as pool:
            results = np.asarray(
                list(pool.map(self._batch_compute_func, events, chunksize)))

        return results
Exemple #4
0
class EFPBase(with_metaclass(ABCMeta, object)):
    def __init__(self, measure, beta, kappa, normed, coords, check_input):

        if 'efpm' in measure:
            raise ValueError('\'efpm\' no longer supported')
        if 'efm' in measure:
            raise ValueError('\'efm\' no longer supported')

        # store measure object
        self._measure = Measure(measure, beta, kappa, normed, coords,
                                check_input)

    def get_zs_thetas_dict(self, event, zs, thetas):
        if event is not None:
            zs, thetas = self._measure.evaluate(event)
        elif zs is None or thetas is None:
            raise TypeError(
                'if event is None then zs and/or thetas cannot also be None')
        return zs, {w: thetas**w for w in self._weight_set}

    @abstractproperty
    def _weight_set(self):
        pass

    @property
    def measure(self):
        return self._measure.measure

    @property
    def beta(self):
        return self._measure.beta

    @property
    def kappa(self):
        return self._measure.kappa

    @property
    def normed(self):
        return self._measure.normed

    @property
    def check_input(self):
        return self._measure.check_input

    @property
    def subslicing(self):
        return self._measure.subslicing

    def _batch_compute_func(self, event):
        return self.compute(event, batch_call=True)

    @abstractmethod
    def compute(self, *args, **kwargs):
        pass

    def batch_compute(self, events, n_jobs=-1):
        """Computes the value of the EFP on several events.

        **Arguments**

        - **events** : array_like or `fastjet.PseudoJet`
            - The events as an array of arrays of particles in coordinates
            matching those anticipated by `coords`.
        - **n_jobs** : _int_ 
            - The number of worker processes to use. A value of `-1` will attempt
            to use as many processes as there are CPUs on the machine.

        **Returns**

        - _1-d numpy.ndarray_
            - A vector of the EFP value for each event.
        """

        if n_jobs == -1:
            try:
                self.n_jobs = multiprocessing.cpu_count()
            except:
                self.n_jobs = 4  # choose reasonable value

        # setup processor pool
        chunksize = max(len(events) // self.n_jobs, 1)
        if sys.version_info[0] == 3:
            with multiprocessing.Pool(self.n_jobs) as pool:
                results = np.asarray(
                    list(pool.imap(self._batch_compute_func, events,
                                   chunksize)))
        # Pool is not a context manager in python 2
        else:
            pool = multiprocessing.Pool(self.n_jobs)
            results = np.asarray(
                list(pool.imap(self._batch_compute_func, events, chunksize)))
            pool.close()

        return results