Exemple #1
0
def test_whenNextBoardIsFinishedThenAnyBoardCanBePlayed():
    main_board = MainBoard()
    # Force some sub_board plays to finish a board
    finished_sub_board = main_board._board[2][2] \
        .add_my_move(SubBoardCoords(0, 0)) \
        .add_my_move(SubBoardCoords(1, 1)) \
        .add_my_move(SubBoardCoords(2, 2))

    # Set that sub-board where the sub_board_next_player_must_play will be
    main_board._board[2][2] = finished_sub_board
    # Play a move that will make the finished board the next board (Move 2, 2)
    main_board = main_board.add_my_move(MainBoardCoords(0, 0), SubBoardCoords(2, 2))
    # Playing anywhere is now allowed
    assert main_board.sub_board_next_player_must_play == None
    assert main_board.is_playing_on_sub_board_allowed(MainBoardCoords(1, 1)) == True
    main_board.add_opponent_move(MainBoardCoords(0, 0), SubBoardCoords(1, 1))
Exemple #2
0
def test_whenNextBoardIsFinishedThenGetValidBoardsReturnsAllAvailableBoards():
    main_board = MainBoard()
    # Force some sub_board plays to finish a board
    finished_sub_board = main_board._board[2][2] \
        .add_my_move(SubBoardCoords(0, 0)) \
        .add_my_move(SubBoardCoords(1, 1)) \
        .add_my_move(SubBoardCoords(2, 2))

    # Set that sub-board where the sub_board_next_player_must_play will be
    main_board._board[2][2] = finished_sub_board
    # Play a move that will make the finished board the next board (Move 2, 2)
    main_board = main_board.add_my_move(MainBoardCoords(0, 0), SubBoardCoords(2, 2))
    # Playing anywhere is now allowed
    valid_boards = main_board.get_playable_coords()
    assert len(valid_boards) == 8
    assert valid_boards == [MainBoardCoords(0, 0), MainBoardCoords(0, 1), MainBoardCoords(0, 2),
                            MainBoardCoords(1, 0), MainBoardCoords(1, 1), MainBoardCoords(1, 2),
                            MainBoardCoords(2, 0), MainBoardCoords(2, 1)]
Exemple #3
0
def test_whenMainBoardIsFinishedThenNewMoveRaisesException():
    main_board = MainBoard()
    main_board._is_finished = True

    with pytest.raises(MoveInFinishedBoardError):
        main_board.add_my_move(MainBoardCoords(1, 1), SubBoardCoords(1, 1))
Exemple #4
0
class MonteCarlo(StdOutPlayer):
    def __init__(self):
        super().__init__(
        )  #means: get all initialisation attributes from base class
        self.children = []
        self.visited = True
        self.plays = 0
        self.wins = 0
        self.player = 1
        self.board_state = MainBoard(
            3)  #should be an array storing the game state
        self.sub_board = MonteCarlo.pick_next_main_board_coords(board_state)

    def CreateChildren(self):
        legal_moves = list(
            self.board_state.get_sub_board.get_playable_coords())
        for move in legal_moves:
            self.children.append(Node(self.board_state.add_my_move(move)))

    def get_my_move(self):  # -> Tuple[MainBoardCoords, SubBoardCoords
        main_board_coords = self.pick_next_main_board_coords()
        sub_board = self.main_board.get_sub_board(main_board_coords)
        sub_board_coords = self.pick_random_sub_board_coords(sub_board)
        return main_board_coords, sub_board_coords

    def pick_next_main_board_coords(self) -> MainBoardCoords:
        if self.main_board.sub_board_next_player_must_play is None:
            return random.choice(self.main_board.get_playable_coords())
        else:
            return self.main_board.sub_board_next_player_must_play

    @staticmethod
    def pick_random_sub_board_coords(
        sub_board: SubBoard
    ) -> SubBoardCoords:  #this means: argument should be of type 'SubBoard' and
        # #do we need to pass legal moves now so we can make the kids?)
        self.CreateChildren()
        print(main_board)
        return monte_carlo_tree_search(self)

    def monte_carlo_tree_search(node):
        begin = datetime.datetime.utcnow()

    while datetime.datetime.utcnow() - begin < datetime.timedelta(
            milliseconds=4.9):
        #if all root node's children are visited:
        if all(child.visited for child in node.children):
            for child in node.children:
                print(child.visited)
                #next node to explore is one with max UCT
            return max_uct(node)  #this returns the best poss next move
        #if some unvisited:
        else:
            node.run_simulation(node)
    return max_uct(node)

    def run_simulation(node):
        pdb.set_trace()

    print('mainboard:' + self.main_board)
    if self.MainBoard.is_finished():  ###
        node.plays += 1  #shouldn't be self.?
        if MainBoard.winner == 1:
            node.wins += 1
            return node.plays, node.wins
        elif MainBoard.winner == 2:
            node.wins -= 1
            return node.plays, node.wins
        else:  #draw
            return node.plays  #just return result? don't need three if statements
    else:
        node.CreateChildren()
        next_child = random.choice(node.children)
        print('next child:', next_child)
        node.visited = True
        node.wins = wins + run_simulation(next_child)
        print('wins:', node.wins)
        #make this wins, play = ?
    def max_uct(node, c=1.4):
        for child in node.children:
            print('wins:', child.wins, 'plays:', child.plays)
        uct_vals = [
            (child.wins / (child.plays)) + c * np.sqrt(
                (2 * np.log(node.wins) / (node.plays)))
            for child in node.children
        ]  #first terms = ratio wins of child, second term is total ratio wins
        return 'hello'  #node.children[np.argmax(uct_vals)]