def real_spec(request): band = request.param wav, flux = load_aces_spectrum([3900, 4.5, 0.0, 0]) wav, flux = wav_selector(wav, flux, *band_limits(band)) flux = flux / snr_constant_band(wav, flux, 100, band) atm = Atmosphere.from_band(band).at(wav) return wav, flux, atm.transmission
def testing_spectrum(request, use_test_config): wav, flux = load_aces_spectrum(request.param) return wav, flux
def testing_spectrum(request): wav, flux = load_aces_spectrum(request.param) return wav, flux
def test_invalid_load_aces_spectrum(params): with pytest.raises(ValueError): load_aces_spectrum(params, wl_range=[21000, 22000])
def test_load_aces_spectrum(photons, use_test_config): wav, flux = load_aces_spectrum([3900, 4.5, 0, 0], photons=photons, air=False, wl_range=[21000, 22000]) assert len(wav) == len(flux)
def do_analysis( star_params, vsini: float, R: float, band: str, sampling: float = 3.0, conv_kwargs=None, snr: float = 100.0, ref_band: str = "J", rv: float = 0.0, air: bool = False, model: str = "aces", verbose: bool = False, ) -> Tuple[Quantity, ...]: """Calculate RV precision and Quality for specific parameter set. Parameters ---------- star_param: Stellar parameters [temp, logg, feh, alpha] for phoenix model libraries. vsini: float Stellar equatorial rotation. R: float Instrumental resolution. band: str Spectral band. sampling: float (default=False) Per pixel sampling (after convolutions) conv_kwargs: Dict (default=None) Arguments specific for the convolutions, 'epsilon', 'fwhm_lim', 'num_procs', 'normalize', 'verbose'. snr: float (default=100) SNR normalization level. SNR per pixel and the center of the ref_band. ref_band: str (default="J") Reference band for SNR normalization. rv: float Radial velocity in km/s (default = 0.0). air: bool Get model in air wavelengths (default=False). model: str Name of synthetic library (aces, btsettl) to use. Default = 'aces'. verbose: Enable verbose (default=False). Returns ------- q: astropy.Quality Spectral quality. result_1: astropy.Quality RV precision under condition 1. result_2 : astropy.Quality RV precision under condition 2. result_3: astropy.Quality RV precision under condition 3. Notes ----- We apply the radial velocity doppler shift after - convolution (rotation and resolution) - resampling - SNR normalization. in this way the RV only effects the precision due to the telluric mask interaction. Physically the RV should be applied between the rotational and instrumental convolution but we assume this effect is negligible. """ if conv_kwargs is None: conv_kwargs = { "epsilon": 0.6, "fwhm_lim": 5.0, "num_procs": num_cpu_minus_1, "normalize": True, "verbose": verbose, } if ref_band.upper() == "SELF": ref_band = band model = check_model(model) if model == "aces": wav, flux = load_aces_spectrum(star_params, photons=True, air=air) elif model == "btsettl": wav, flux = load_btsettl_spectrum(star_params, photons=True, air=air) else: raise Exception("Invalid model name reached.") wav_grid, sampled_flux = convolve_and_resample(wav, flux, vsini, R, band, sampling, **conv_kwargs) # Doppler shift try: if rv != 0: sampled_flux = doppler_shift_flux(wav_grid, sampled_flux, vel=rv) except Exception as e: print("Doppler shift was unsuccessful") raise e # Scale normalization for precision wav_ref, sampled_ref = convolve_and_resample(wav, flux, vsini, R, ref_band, sampling, **conv_kwargs) snr_normalize = snr_constant_band(wav_ref, sampled_ref, snr=snr, band=ref_band, sampling=sampling, verbose=verbose) sampled_flux = sampled_flux / snr_normalize if (ref_band == band) and verbose: mid_point = band_middle(ref_band) index_ref = np.searchsorted( wav_grid, mid_point) # searching for the index closer to 1.25 micron snr_estimate = np.sqrt( np.sum(sampled_flux[index_ref - 1:index_ref + 2])) print( "\tSanity Check: The S/N at {0:4.02} micron = {1:4.2f}, (should be {2:g})." .format(mid_point, snr_estimate, snr)) # Load Atmosphere for this band. atm = Atmosphere.from_band(band=band, bary=True).at(wav_grid) assert np.allclose(atm.wl, wav_grid), "The atmosphere does not cover the wav_grid" # Spectral Quality/Precision q = quality(wav_grid, sampled_flux) # Precision given by the first condition: result_1 = rv_precision(wav_grid, sampled_flux, mask=None) # Precision as given by the second condition result_2 = rv_precision(wav_grid, sampled_flux, mask=atm.mask) # Precision as given by the third condition: M = T**2 result_3 = rv_precision(wav_grid, sampled_flux, mask=atm.transmission**2) # Turn quality back into a Quantity (to give it a .value method) q = q * u.dimensionless_unscaled return q, result_1, result_2, result_3
def do_analysis( star_params, vsini: float, R: float, band: str, sampling: float = 3.0, conv_kwargs=None, snr: float = 100.0, ref_band: str = "J", rv: float = 0.0, air: bool = False, model="phoenix", ): """Precision and Quality for specific parameter set. Parameters ---------- air: bool Get model in air wavelengths. model: str Name of synthetic library to use. (phoenix, btsettl). rv: float Radial velocity. Notes: We apply the radial velocity doppler shift after - convolution (rotation and resolution) - resampling - SNR normalization. in this way the RV only effects the precision due to the telluric mask interaction. The RV should maybe come between the rotational and instrumental convolution but we assume this effect is negligible. """ if conv_kwargs is None: conv_kwargs = { "epsilon": 0.6, "fwhm_lim": 5.0, "num_procs": num_procs_minus_1, "normalize": True, } if ref_band.upper() == "SELF": ref_band = band if model == "phoenix": # Full photon count spectrum wav, flux = load_aces_spectrum(star_params, photons=True, air=air) elif model == "btsettl": wav, flux = load_btsettl_spectrum(star_params, photons=True, air=air) else: raise ValueError( "Model name error in '{}'. Valid choices are 'phoenix and 'btsettl'" .format(model)) wav_grid, sampled_flux = convolve_and_resample(wav, flux, vsini, R, band, sampling, **conv_kwargs) # Doppler shift try: if rv != 0: sampled_flux = doppler_shift_flux(wav_grid, sampled_flux, vel=rv) except Exception as e: print("Doppler shift was unsuccessful") raise e # Spectral Quality q = quality(wav_grid, sampled_flux) # Scale normalization for precision wav_ref, sampled_ref = convolve_and_resample(wav, flux, vsini, R, ref_band, sampling, **conv_kwargs) snr_normalize = snr_constant_band(wav_ref, sampled_ref, snr=snr, band=ref_band, sampling=sampling) sampled_flux = sampled_flux / snr_normalize if ref_band == band: mid_point = band_middle(ref_band) index_ref = np.searchsorted( wav_grid, mid_point) # searching for the index closer to 1.25 micron snr_estimate = np.sqrt( np.sum(sampled_flux[index_ref - 1:index_ref + 2])) print( "\tSanity Check: The S/N at {0:4.02} micron = {1:4.2f}, (should be {2:g})." .format(mid_point, snr_estimate, snr)) # Load Atmosphere for this band. atm = Atmosphere.from_band(band=band, bary=True).at(wav_grid) assert np.allclose(atm.wl, wav_grid), "The atmosphere does not cover the wav_grid" # Spectral Quality/Precision q = quality(wav_grid, sampled_flux) # Precision given by the first condition: prec1 = rv_precision(wav_grid, sampled_flux, mask=None) # Precision as given by the second condition prec2 = rv_precision(wav_grid, sampled_flux, mask=atm.mask) # Precision as given by the third condition: M = T**2 prec3 = rv_precision(wav_grid, sampled_flux, mask=atm.transmission**2) # Turn quality back into a Quantity (to give it a .value method) q = q * u.dimensionless_unscaled return [q, prec1, prec2, prec3]
def test_invalid_load_aces_spectrum(params): # Invalid CIFIST parameters from Starfish.constants import GridError with pytest.raises(GridError): load_aces_spectrum(params, wl_range=[21000, 22000])