def gen2(csv_path): """ Just like the full IMDB schema but without tables that are not used in the job-light benchmark. """ schema = SchemaGraph() # tables # id, title, imdb_index, kind_id, production_year, imdb_id,phonetic_code, episode_of_id, season_nr, episode_nr,series_years, md5sum # title schema.add_table( Table('auth_user', attributes=['id_copy', 'id', 'is_active'], irrelevant_attributes=['is_active'], csv_file_location=csv_path.format('auth_user'), table_size=91889)) # 无用列增加了title # movie_info schema.add_table( Table('student_courseenrollment', attributes=['id_copy', 'id', 'user_id', 'is_active'], irrelevant_attributes=['id_copy'], csv_file_location=csv_path.format('student_courseenrollment'), table_size=85637)) # 无用列增加了info # relationships schema.add_relationship('student_courseenrollment', 'user_id', 'auth_user', 'id') return schema
def cols6(csv_path): """ Just like the full IMDB schema but without tables that are not used in the job-light benchmark. """ schema = SchemaGraph() # tables # id, title, imdb_index, kind_id, production_year, imdb_id,phonetic_code, episode_of_id, season_nr, episode_nr,series_years, md5sum # title schema.add_table( Table('title', attributes=[ 'id', 'title', 'imdb_index', 'kind_id', 'production_year', 'imdb_id', 'phonetic_code', 'episode_of_id', 'season_nr', 'episode_nr', 'series_years', 'md5sum' ], irrelevant_attributes=[ 'title', 'imdb_index', 'imdb_id', 'episode_of_id', 'season_nr', 'episode_nr', 'md5sum' ], no_compression=['kind_id'], csv_file_location=csv_path.format('title'), table_size=3486660)) # 无用列增加了title # movie_info schema.add_table( Table('movie_info', attributes=['id', 'movie_id', 'info_type_id', 'info', 'note'], csv_file_location=csv_path.format('movie_info'), irrelevant_attributes=['info', 'note'], no_compression=['info_type_id'], table_size=24988000)) # 无用列增加了info # cast_info schema.add_table( Table('cast_info', attributes=[ 'id', 'person_id', 'movie_id', 'person_role_id', 'note', 'nr_order', 'role_id' ], csv_file_location=csv_path.format('cast_info'), irrelevant_attributes=[ 'person_id', 'person_role_id', 'note', 'nr_order' ], no_compression=['role_id'], table_size=63475800)) # relationships schema.add_relationship('movie_info', 'movie_id', 'title', 'id') schema.add_relationship('cast_info', 'movie_id', 'title', 'id') return schema
def gen10(csv_path): """ Just like the full IMDB schema but without tables that are not used in the job-light benchmark. """ schema = SchemaGraph() # tables # id, title, imdb_index, kind_id, production_year, imdb_id,phonetic_code, episode_of_id, season_nr, episode_nr,series_years, md5sum # title schema.add_table( Table('auth_user', attributes=['id_copy', 'id', 'is_active'], csv_file_location=csv_path.format('auth_user'), table_size=91889)) # 无用列增加了title # movie_info schema.add_table( Table('student_courseenrollment', attributes=['id_copy', 'id', 'user_id', 'is_active'], csv_file_location=csv_path.format('student_courseenrollment'), table_size=85637)) # 无用列增加了info # cast_info schema.add_table( Table('organization_account_userorgprofile', attributes=[ 'id', 'org_id', 'user_id', 'origin', 'role', '_first_level_id' ], csv_file_location=csv_path.format( 'organization_account_userorgprofile'), table_size=99832)) schema.add_table( Table('auth_userprofile', attributes=['id', 'user_id', 'level_of_education', 'host'], csv_file_location=csv_path.format('auth_userprofile'), table_size=99349)) # relationships schema.add_relationship('student_courseenrollment', 'user_id', 'auth_user', 'id') schema.add_relationship('organization_account_userorgprofile', 'user_id', 'auth_user', 'id') schema.add_relationship('auth_userprofile', 'user_id', 'auth_user', 'id') return schema
def gen_flights_10M_schema(csv_path): """ Flights schema with 1M tuples """ schema = SchemaGraph() # YEAR_DATE,UNIQUE_CARRIER,ORIGIN,ORIGIN_STATE_ABR,DEST,DEST_STATE_ABR,DEP_DELAY,TAXI_OUT,TAXI_IN,ARR_DELAY,AIR_TIME,DISTANCE # tables # lineorder schema.add_table( Table('flights', attributes=[ 'year_date', 'unique_carrier', 'origin', 'origin_state_abr', 'dest', 'dest_state_abr', 'dep_delay', 'taxi_out', 'taxi_in', 'arr_delay', 'air_time', 'distance' ], csv_file_location=csv_path.format('dataset_sampled'), table_size=10000000, primary_key=['f_flightno'], sample_rate=0.1, fd_list=[('origin', 'origin_state_abr'), ('dest', 'dest_state_abr')])) return schema
def gen_job_ranges_imdb_schema(csv_path, version): """ Just like the full IMDB schema but without tables that are not used in the job-light benchmark. """ schema = SchemaGraph() # tables tablename = version attributes = [] tablenamecsv = version table_head = pd.read_csv( '../../../train-test-data/forest_power-data-sql/' + version + '.csv', sep=',', escapechar='\\', encoding='utf-8', low_memory=False, quotechar='"') schema.add_table( Table( tablename, attributes=list(table_head.columns), csv_file_location=csv_path.format(tablenamecsv), # debug的思路要正确 范围 table_size=table_head.shape[0])) return schema
def gen_1t_tpc_ds_schema(csv_path): """ TPCDS 1t schema """ schema = SchemaGraph() schema.add_table(Table('store_sales', attributes=['ss_sold_date_sk', 'ss_sold_time_sk', 'ss_item_sk', 'ss_customer_sk', 'ss_cdemo_sk', 'ss_hdemo_sk', 'ss_addr_sk', 'ss_store_sk', 'ss_promo_sk', 'ss_ticket_number', 'ss_quantity', 'ss_wholesale_cost', 'ss_list_price', 'ss_sales_price', 'ss_ext_discount_amt', 'ss_ext_sales_price', 'ss_ext_wholesale_cost', 'ss_ext_list_price', 'ss_ext_tax', 'ss_coupon_amt', 'ss_net_paid', 'ss_net_paid_inc_tax', 'ss_net_profit'], irrelevant_attributes=['ss_sold_time_sk', 'ss_item_sk', 'ss_customer_sk', 'ss_cdemo_sk', 'ss_hdemo_sk', 'ss_addr_sk', 'ss_promo_sk', 'ss_ticket_number', 'ss_quantity', 'ss_wholesale_cost', 'ss_list_price', 'ss_ext_discount_amt', 'ss_ext_sales_price', 'ss_ext_wholesale_cost', 'ss_ext_list_price', 'ss_ext_tax', 'ss_coupon_amt', 'ss_net_paid', 'ss_net_paid_inc_tax', 'ss_net_profit'], no_compression=['ss_sold_date_sk', 'ss_store_sk', 'ss_sales_price'], csv_file_location=csv_path.format('store_sales_sampled'), table_size=2879987999, primary_key=['ss_item_sk', 'ss_ticket_number'], sample_rate=10000000 / 2879987999 )) return schema
def construct_schema(table): # construct a schema that has one table only csv_file = DATA_ROOT / table.dataset / f"{table.version}.csv" schema = SchemaGraph() schema.add_table( Table( f'"{table.name}"', # use table name in postgres since deepdb deal with sql directly attributes=table.data.columns.values.tolist(), csv_file_location=csv_file, table_size=table.row_num)) return schema
def gen_cover_schema(csv_path="./ssb-benchmark/cover.csv"): schema = SchemaGraph() schema.add_table(Table('cover', attributes=['c0','c1','c2','c3','c4','c5','c6','c7','c8','c9'], irrelevant_attributes=None, no_compression=['c0','c1','c2','c3','c4','c5','c6','c7','c8','c9'], csv_file_location=csv_path, table_size=581012, primary_key=['c0'], )) return schema
def gen_imdb_schema(csv_path): """ Specifies full imdb schema. Also tables not in the job-light benchmark. """ schema = SchemaGraph() # tables # title schema.add_table( Table('title', attributes=[ 'id', 'title', 'imdb_index', 'kind_id', 'production_year', 'imdb_id', 'phonetic_code', 'episode_of_id', 'season_nr', 'episode_nr', 'series_years', 'md5sum' ], irrelevant_attributes=['episode_of_id'], csv_file_location=csv_path.format('title'), table_size=3486660)) # movie_info_idx schema.add_table( Table('movie_info_idx', attributes=['id', 'movie_id', 'info_type_id', 'info', 'note'], csv_file_location=csv_path.format('movie_info_idx'), table_size=3147110)) # movie_info schema.add_table( Table('movie_info', attributes=['id', 'movie_id', 'info_type_id', 'info', 'note'], csv_file_location=csv_path.format('movie_info'), table_size=24988000)) # info_type schema.add_table( Table('info_type', attributes=['id', 'info'], csv_file_location=csv_path.format('info_type'), table_size=113)) # cast_info schema.add_table( Table('cast_info', attributes=[ 'id', 'person_id', 'movie_id', 'person_role_id', 'note', 'nr_order', 'role_id' ], csv_file_location=csv_path.format('cast_info'), table_size=63475800)) # char_name schema.add_table( Table('char_name', attributes=[ 'id', 'name', 'imdb_index', 'imdb_id', 'name_pcode_nf', 'surname_pcode', 'md5sum' ], csv_file_location=csv_path.format('char_name'), table_size=4314870)) # role_type schema.add_table( Table('role_type', attributes=['id', 'role'], csv_file_location=csv_path.format('role_type'), table_size=0)) # complete_cast schema.add_table( Table('complete_cast', attributes=['id', 'movie_id', 'subject_id', 'status_id'], csv_file_location=csv_path.format('complete_cast'), table_size=135086)) # comp_cast_type schema.add_table( Table('comp_cast_type', attributes=['id', 'kind'], csv_file_location=csv_path.format('comp_cast_type'), table_size=0)) # name schema.add_table( Table('name', attributes=[ 'id', 'name', 'imdb_index', 'imdb_id', 'gender', 'name_pcode_cf', 'name_pcode_nf', 'surname_pcode', 'md5sum' ], csv_file_location=csv_path.format('name'), table_size=6379740)) # aka_name schema.add_table( Table('aka_name', attributes=[ 'id', 'person_id', 'name', 'imdb_index', 'name_pcode_cf', 'name_pcode_nf', 'surname_pcode', 'md5sum' ], csv_file_location=csv_path.format('aka_name'), table_size=1312270)) # movie_link, is empty # schema.add_table(Table('movie_link', attributes=['id', 'movie_id', 'linked_movie_id', 'link_type_id'], # csv_file_location=csv_path.format('movie_link'))) # link_type, no relationships # schema.add_table(Table('link_type', attributes=['id', 'link'], # csv_file_location=csv_path.format('link_type'))) # movie_keyword schema.add_table( Table('movie_keyword', attributes=['id', 'movie_id', 'keyword_id'], csv_file_location=csv_path.format('movie_keyword'), table_size=7522600)) # keyword schema.add_table( Table('keyword', attributes=['id', 'keyword', 'phonetic_code'], csv_file_location=csv_path.format('keyword'), table_size=236627)) # person_info schema.add_table( Table('person_info', attributes=['id', 'person_id', 'info_type_id', 'info', 'note'], csv_file_location=csv_path.format('person_info'), table_size=4130210)) # movie_companies schema.add_table( Table('movie_companies', attributes=[ 'id', 'movie_id', 'company_id', 'company_type_id', 'note' ], csv_file_location=csv_path.format('movie_companies'), table_size=4958300)) # company_name schema.add_table( Table('company_name', attributes=[ 'id', 'name', 'country_code', 'imdb_id', 'name_pcode_nf', 'name_pcode_sf', 'md5sum' ], csv_file_location=csv_path.format('company_name'), table_size=362131)) # company_type schema.add_table( Table('company_type', attributes=['id', 'kind'], csv_file_location=csv_path.format('company_type'), table_size=0)) # aka_title schema.add_table( Table('aka_title', attributes=[ 'id', 'movie_id', 'title', 'imdb_index', 'kind_id', 'production_year', 'phonetic_code', 'episode_of_id', 'season_nr', 'episode_nr', 'note', 'md5sum' ], irrelevant_attributes=['episode_of_id'], csv_file_location=csv_path.format('aka_title'), table_size=528268)) # kind_type schema.add_table( Table('kind_type', attributes=['id', 'kind'], csv_file_location=csv_path.format('kind_type'), table_size=0)) # relationships # title # omit self-join for now # schema.add_relationship('title', 'episode_of_id', 'title', 'id') schema.add_relationship('title', 'kind_id', 'kind_type', 'id') # movie_info_idx schema.add_relationship('movie_info_idx', 'info_type_id', 'info_type', 'id') schema.add_relationship('movie_info_idx', 'movie_id', 'title', 'id') # movie_info schema.add_relationship('movie_info', 'info_type_id', 'info_type', 'id') schema.add_relationship('movie_info', 'movie_id', 'title', 'id') # info_type, no relationships # cast_info schema.add_relationship('cast_info', 'movie_id', 'title', 'id') schema.add_relationship('cast_info', 'person_id', 'name', 'id') schema.add_relationship('cast_info', 'person_role_id', 'char_name', 'id') schema.add_relationship('cast_info', 'role_id', 'role_type', 'id') # char_name, no relationships # role_type, no relationships # complete_cast schema.add_relationship('complete_cast', 'movie_id', 'title', 'id') schema.add_relationship('complete_cast', 'status_id', 'comp_cast_type', 'id') schema.add_relationship('complete_cast', 'subject_id', 'comp_cast_type', 'id') # comp_cast_type, no relationships # name, no relationships # aka_name schema.add_relationship('aka_name', 'person_id', 'name', 'id') # movie_link, is empty # schema.add_relationship('movie_link', 'link_type_id', 'link_type', 'id') # schema.add_relationship('movie_link', 'linked_movie_id', 'title', 'id') # schema.add_relationship('movie_link', 'movie_id', 'title', 'id') # link_type, no relationships # movie_keyword schema.add_relationship('movie_keyword', 'keyword_id', 'keyword', 'id') schema.add_relationship('movie_keyword', 'movie_id', 'title', 'id') # keyword, no relationships # person_info schema.add_relationship('person_info', 'info_type_id', 'info_type', 'id') schema.add_relationship('person_info', 'person_id', 'name', 'id') # movie_companies schema.add_relationship('movie_companies', 'company_id', 'company_name', 'id') schema.add_relationship('movie_companies', 'company_type_id', 'company_type', 'id') schema.add_relationship('movie_companies', 'movie_id', 'title', 'id') # company_name, no relationships # company_type, no relationships # aka_title schema.add_relationship('aka_title', 'movie_id', 'title', 'id') schema.add_relationship('aka_title', 'kind_id', 'kind_type', 'id') # kind_type, no relationships return schema
def gen_job_light_imdb_schema(csv_path): """ Just like the full IMDB schema but without tables that are not used in the job-light benchmark. """ schema = SchemaGraph() # tables # title schema.add_table( Table('title', attributes=[ 'id', 'title', 'imdb_index', 'kind_id', 'production_year', 'imdb_id', 'phonetic_code', 'episode_of_id', 'season_nr', 'episode_nr', 'series_years', 'md5sum' ], irrelevant_attributes=[ 'episode_of_id', 'title', 'imdb_index', 'phonetic_code', 'season_nr', 'imdb_id', 'episode_nr', 'series_years', 'md5sum' ], no_compression=['kind_id'], csv_file_location=csv_path.format('title'), table_size=3486660)) # movie_info_idx schema.add_table( Table('movie_info_idx', attributes=['id', 'movie_id', 'info_type_id', 'info', 'note'], csv_file_location=csv_path.format('movie_info_idx'), irrelevant_attributes=['info', 'note'], no_compression=['info_type_id'], table_size=3147110)) # movie_info schema.add_table( Table('movie_info', attributes=['id', 'movie_id', 'info_type_id', 'info', 'note'], csv_file_location=csv_path.format('movie_info'), irrelevant_attributes=['info', 'note'], no_compression=['info_type_id'], table_size=24988000)) # cast_info schema.add_table( Table('cast_info', attributes=[ 'id', 'person_id', 'movie_id', 'person_role_id', 'note', 'nr_order', 'role_id' ], csv_file_location=csv_path.format('cast_info'), irrelevant_attributes=[ 'nr_order', 'note', 'person_id', 'person_role_id' ], no_compression=['role_id'], table_size=63475800)) # movie_keyword schema.add_table( Table('movie_keyword', attributes=['id', 'movie_id', 'keyword_id'], csv_file_location=csv_path.format('movie_keyword'), no_compression=['keyword_id'], table_size=7522600)) # movie_companies schema.add_table( Table('movie_companies', attributes=[ 'id', 'movie_id', 'company_id', 'company_type_id', 'note' ], csv_file_location=csv_path.format('movie_companies'), irrelevant_attributes=['note'], no_compression=['company_id', 'company_type_id'], table_size=4958300)) # relationships schema.add_relationship('movie_info_idx', 'movie_id', 'title', 'id') schema.add_relationship('movie_info', 'movie_id', 'title', 'id') schema.add_relationship('cast_info', 'movie_id', 'title', 'id') schema.add_relationship('movie_keyword', 'movie_id', 'title', 'id') schema.add_relationship('movie_companies', 'movie_id', 'title', 'id') return schema
def gen_500gb_ssb_schema(csv_path): """ SSB schema for SF=500. """ schema = SchemaGraph() # tables # lineorder schema.add_table(Table('lineorder', attributes=['lo_orderkey', 'lo_linenumber', 'lo_custkey', 'lo_partkey', 'lo_suppkey', 'lo_orderdate', 'lo_orderpriority', 'lo_shippriority', 'lo_quantity', 'lo_extendedprice', 'lo_ordertotalprice', 'lo_discount', 'lo_revenue', 'lo_supplycost', 'lo_tax', 'lo_commitdate', 'lo_shipmode'], csv_file_location=csv_path.format('lineorder_sampled'), irrelevant_attributes=['lo_commitdate'], table_size=3000028242, primary_key=['lo_orderkey', 'lo_linenumber'], sample_rate=0.003333)) # dwdate # dwdate.d_dayofweek -> dwdate.d_daynuminweek # dwdate.d_dayofweek -> dwdate.d_lastdayinweekfl # dwdate.d_month -> dwdate.d_monthnuminyear # dwdate.d_monthnuminyear -> dwdate.d_sellingseason # dwdate.d_daynuminyear -> dwdate.d_weeknuminyear schema.add_table( Table('dwdate', attributes=['d_datekey', 'd_date', 'd_dayofweek', 'd_month', 'd_year', 'd_yearmonthnum', 'd_yearmonth', 'd_daynuminweek', 'd_daynuminmonth', 'd_daynuminyear', 'd_monthnuminyear', 'd_weeknuminyear', 'd_sellingseason', 'd_lastdayinweekfl', 'd_lastdayinmonthfl', 'd_holidayfl', 'd_weekdayfl'], csv_file_location=csv_path.format('date'), table_size=2556, primary_key=["d_datekey"], fd_list=[('d_dayofweek', 'd_daynuminweek'), ('d_dayofweek', 'd_lastdayinweekfl'), ('d_month', 'd_monthnuminyear'), ('d_monthnuminyear', 'd_sellingseason'), ('d_daynuminyear', 'd_weeknuminyear')])) # customer # customer.c_city -> customer.c_nation # customer.c_nation -> customer.c_region schema.add_table( Table('customer', attributes=['c_custkey', 'c_name', 'c_address', 'c_city', 'c_nation', 'c_region', 'c_phone', 'c_mktsegment'], csv_file_location=csv_path.format('customer'), table_size=15000000, primary_key=["c_custkey"], fd_list=[('c_city', 'c_nation'), ('c_nation', 'c_region')])) # part # part.p_brand1 -> part.p_category # part.p_category -> part.p_mfgr schema.add_table( Table('part', attributes=['p_partkey', 'p_name', 'p_mfgr', 'p_category', 'p_brand1', 'p_color', 'p_type', 'p_size', 'p_container'], csv_file_location=csv_path.format('part'), table_size=1800000, primary_key=["p_partkey"], fd_list=[('p_category', 'p_mfgr'), ('p_brand1', 'p_category')])) # supplier # supplier.s_city -> supplier.s_nation # supplier.s_nation -> supplier.s_region schema.add_table( Table('supplier', attributes=['s_suppkey', 's_name', 's_address', 's_city', 's_nation', 's_region', 's_phone'], csv_file_location=csv_path.format('supplier'), table_size=1000000, primary_key=["s_suppkey"], fd_list=[('s_city', 's_nation'), ('s_nation', 's_region')])) # relationships schema.add_relationship('lineorder', 'lo_custkey', 'customer', 'c_custkey') schema.add_relationship('lineorder', 'lo_partkey', 'part', 'p_partkey') schema.add_relationship('lineorder', 'lo_suppkey', 'supplier', 's_suppkey') schema.add_relationship('lineorder', 'lo_orderdate', 'dwdate', 'd_datekey') # schema.add_relationship('lineorder', 'lo_commitdate', 'dwdate', 'd_datekey') return schema