Exemple #1
0
 def default_traits_view(self):
     """The default traits view of the Engine View.
     """
     view = View(HSplit(
                     Item('engine', 
                         id='mayavi.engine_rich_view.pipeline_view', 
                         springy=True,
                         resizable=True,
                         editor=self.tree_editor, 
                         dock='tab',
                         label='Pipeline'), 
                     Item('engine',
                         id='mayavi.engine_rich_view.current_selection', 
                         editor=InstanceEditor(
                                     view='current_selection_view'),
                         springy=True,
                         resizable=True,
                         style='custom'),
                 show_labels=False,
                 id='mayavi.engine_rich_view_group',
                 ),
                 id='enthought.mayavi.engine_rich_view',
                 help=False,
                 resizable=True,
                 undo=False,
                 revert=False,
                 ok=False,
                 cancel=False,
                 title='Mayavi pipeline',
                 icon=self.icon,
                 toolbar=self.toolbar,
                 handler=EngineRichViewHandler)
     return view
Exemple #2
0
class Nirvana(HasTraits):
    xcontrol = Instance(XControl)
    csetting = Instance(XSetting)
    figure = Instance(Figure) # 控制绘图控件的Figure对象


    view = View(
        HSplit( #
            Item("figure", editor=MPLFigureEditor(), show_label=False,width=0.85),
            Group(
                Item('xcontrol',style='custom',show_label=False),
                Item('csetting',style='custom',show_label=False),
                show_labels = False, # 组中的所有控件都不显示标签
                layout = 'tabbed',
            ),
            show_labels = False # 组中的所有控件都不显示标签
        ),
        resizable=True, 
        height=0.95, 
        width=0.99,
        buttons=[OKButton,]
    )
    
    def _figure_default(self):
        figure = Figure()
        figure.add_axes([0.05, 0.04, 0.9, 0.92])
        return figure

    def _xcontrol_default(self):
        return XControl(figure=self.figure)

    def _csetting_default(self):
        cs = XSetting(figure=self.figure)
        cs.generate_candidate([base_infos,index_infos,custom_infos])
        return cs
Exemple #3
0
class EvapoRate(HasTraits):
    " Bring up the whole mess"

    er_plots = Instance(ER_plot_component)
    er_state = Instance(ER_State)

    plots_view = View(HSplit(
        Item('er_plots', style='custom', show_label=False, width=0.7),
        Item('er_state', style='custom', show_label=False, label='State'),
    ),
                      resizable=True,
                      height=0.7,
                      width=0.6,
                      x=0.1,
                      y=0.1,
                      title='EvapoRate HR@KIT2012-18 (git-version)')

    traits_view = View(
        Item('er_state', style='custom', show_label=False),
        resizable=True,
        x=-0.01,
        y=0.05,
        #height=0.7, width=0.6,
        title='EvapoRate HR@KIT2012-18 (git-version)')

    def _er_plots_default(self):
        er_plots = ER_plot_component(data=self.data)
        self.data.er_plots = er_plots
        return er_plots

    def _er_state_default(self):
        er_state = ER_State(data=self.data)
        self.data.er_state = er_state
        return er_state
Exemple #4
0
 def default_traits_view(self):
     view = View(
         HSplit(
             VSplit(
                 Item("object_class", editor=self.tree_editor, show_label=False, 
                     visible_when="object.show_tree"),
                 Group(
                     Item("search", label="搜索"),
                     Item("search_result_str", show_label=False,
                         editor=ListStrEditor(editable=False, selected_index="search_result_index")),
                     label="Search"),
             ),
             Item("current_document", style="custom", show_label=False,
                 editor=CodeEditor(lexer="null", search="top", line = "current_line", 
                     mark_lines="mark_lines", mark_color=0xff7777)),
             id = "tvtkdoc.hsplit"
         ),
         width = 700,
         height = 500,
         resizable = True,
         title = "TVTK文档浏览器",
         id = "tvtkdoc", 
         handler = TVTKDocumentHandler(),
     )
     return view
Exemple #5
0
    def traits_view(self):
        """ Default traits view for this class. """

        help_action = Action(name='Info', action='preferences_help')

        buttons = ['OK', 'Cancel']

        if self.show_apply:
            buttons = ['Apply'] + buttons
        if self.show_help:
            buttons = [help_action] + buttons

        # A tree editor for preferences nodes.
        tree_editor = TreeEditor(nodes=[
            TreeNode(
                node_for=[PreferencesNode],
                auto_open=False,
                children='children',
                label='name',
                rename=False,
                copy=False,
                delete=False,
                insert=False,
                menu=None,
            ),
        ],
                                 on_select=self._selection_changed,
                                 editable=False,
                                 hide_root=True,
                                 selected='selected_node',
                                 show_icons=False)

        view = View(
            HSplit(
                Item(
                    name='root',
                    editor=tree_editor,
                    show_label=False,
                    width=250,
                ),
                Item(
                    name='selected_page',
                    #editor     = WidgetEditor(),
                    show_label=False,
                    width=450,
                    style='custom',
                ),
            ),
            buttons=buttons,
            handler=PreferencesManagerHandler(model=self),
            resizable=True,
            title='Preferences',
            width=.3,
            height=.3,
            kind='modal')
        self.selected_page = self.pages[0]
        return view
class ListDemo(HasTraits):

    items = List(Str)
    view = View(HSplit(Item("items", style="custom", show_label=False),
                       Item("items",
                            style="custom",
                            editor=CheckListEditor(values=filter_types,
                                                   cols=4)),
                       Item("items", editor=SetEditor(values=filter_types)),
                       show_labels=False),
                resizable=True,
                width=600,
                title=u"简单列表编辑器演示")
Exemple #7
0
class ComponentViewer(HasTraits):
    """ A viewer of components for testing purposes """

    # The component being viewed
    component = Instance(Component)

    # The canvas to which the component is added
    canvas = Instance(Canvas)

    # A view into a subsection of the canvas
    viewport = Instance(Viewport)

    # Default view
    traits_view = View(HSplit(
        Group(Item("viewport", editor=ComponentEditor(), show_label=False)),
        Group(Item(name="component", style="custom", show_label=False),
              scrollable=True)),
                       resizable=True,
                       id="canvas_viewer",
                       width=.6,
                       height=.4,
                       title="Viewer")

    def _canvas_default(self):
        """ Trait initialiser """

        canvas = Canvas(draw_axes=True, bgcolor="honeydew")
        return canvas

    def _viewport_default(self):
        """ Trait initialiser """

        viewport = Viewport(component=self.canvas, enable_zoom=True)
        viewport.tools.append(ViewportPanTool(viewport))
        return viewport

    def _component_changed(self, old, new):
        """ Handles the component being changed.
        """
        canvas = self.canvas
        if old is not None:
            canvas.remove(old)
        if new is not None:
            canvas.add(new)

    def _anytrait_changed_for_component(self, new):
        """ Handles redrawing of the canvas. """

        self.canvas.request_redraw()
class MyDemo(HasTraits):
    scene = Instance(SceneModel, ())

    source = Instance(tvtk.ParametricFunctionSource, ())

    func_name = Enum([c.__name__ for c in source_types])

    func = Property(depends_on="func_name")

    traits_view = View(HSplit(
        VGroup(
            Item("func_name", show_label=False),
            Tabbed(
                Item("func",
                     style="custom",
                     editor=InstanceEditor(),
                     show_label=False),
                Item("source", style="custom", show_label=False))),
        Item("scene", style="custom", show_label=False, editor=SceneEditor())),
                       resizable=True,
                       width=700,
                       height=600)

    def __init__(self, *args, **kwds):
        super(MyDemo, self).__init__(*args, **kwds)
        self._make_pipeline()

    def _get_func(self):
        return sources[self.func_name]

    def _make_pipeline(self):
        self.func.on_trait_change(self.on_change, "anytrait")
        src = self.source
        src.on_trait_change(self.on_change, "anytrait")
        src.parametric_function = self.func
        map = tvtk.PolyDataMapper(input_connection=src.output_port)
        act = tvtk.Actor(mapper=map)
        self.scene.add_actor(act)
        self.src = src

    def _func_changed(self, old_func, this_func):
        if old_func is not None:
            old_func.on_trait_change(self.on_change, "anytrait", remove=True)
        this_func.on_trait_change(self.on_change, "anytrait")
        self.src.parametric_function = this_func
        self.scene.render()

    def on_change(self):
        self.scene.render()
Exemple #9
0
class ActorView(HasTraits):
    cube = Instance(tvtk.CubeSource, ())
    scene = Instance(SceneModel)

    traits_view = View(HSplit(
        Item("scene", style="custom", editor=SceneEditor(), show_label=False),
        Item("cube", style="custom", show_label=False)),
                       resizable=True,
                       width=700,
                       height=600)

    def _scene_default(self):
        cube = self.cube
        map = tvtk.PolyDataMapper(input=cube.output)
        act = tvtk.Actor(mapper=map)
        scene = SceneModel()
        scene.add_actor(act)
        return scene
Exemple #10
0
 def default_traits_view(self):
     '''
     Generates the view from the param items.
     '''
     #rf_param_items = [ Item( 'model.' + name, format_str = '%g' ) for name in self.model.param_keys ]
     plot_param_items = [
         Item('max_x', label='max x value'),
         Item('n_points', label='No of plot points')
     ]
     control_items = [
         Item('show', show_label=False),
         Item('clear', show_label=False),
     ]
     view = View(
         HSplit(
             VGroup(
                 Item('@resp_func', show_label=False),  #*rf_param_items,
                 label='Function Parameters',
                 id='stats.spirrid_bak.rf_model_view.rf_params',
                 scrollable=True),
             VGroup(*plot_param_items,
                    label='Plot Parameters',
                    id='stats.spirrid_bak.rf_model_view.plot_params'),
             VGroup(
                 Item('model.comment', show_label=False, style='readonly'),
                 label='Comment',
                 id='stats.spirrid_bak.rf_model_view.comment',
                 scrollable=True,
             ),
             VGroup(HGroup(*control_items),
                    Item('figure',
                         editor=MPLFigureEditor(),
                         resizable=True,
                         show_label=False),
                    label='Plot',
                    id='stats.spirrid_bak.rf_model_view.plot'),
             dock='tab',
             id='stats.spirrid_bak.rf_model_view.split'),
         kind='modal',
         resizable=True,
         dock='tab',
         buttons=[OKButton],
         id='stats.spirrid_bak.rf_model_view')
     return view
Exemple #11
0
class Model(HasTraits):
	a = Code("print 'hello'")
	b = Button("click me")
 
	traits_view = View(HSplit(
	VGroup(
	Tabbed(
	Item('a'),
	Item('a'),
	Item('a')),
	Item('b')),
	VSplit(
	VGroup('b','b','b'),
	HGroup('a', show_border=True,
	label="traits is great")),
	dock="horizontal"
	),
	resizable=True,
	id="my.test.program.id")
Exemple #12
0
class bcsr_gui(HasTraits):
    n_rows = Long(0)
    n_cols = Long(0)
    n_mem = Float(0)
    n_bs = Long(0)
    rows = Array
    cols = Array
    values = Array
    #matrix = Instance (tt)

    view = View(Group(Item('n_rows', style='readonly', label='Number of rows'),
                      Item('n_cols',
                           style='readonly',
                           label='Number of columns'),
                      Item('n_bs', style='readonly', label='Block size'),
                      Item('n_mem',
                           style='readonly',
                           label='Total allocated memory (MB)'),
                      HSplit(
                          Item('rows',
                               show_label=False,
                               style='readonly',
                               editor=ArrayViewEditor(titles=['rows_ptr'],
                                                      format='%d',
                                                      font='Arial 8')),
                          Item('cols',
                               show_label=False,
                               style='readonly',
                               editor=ArrayViewEditor(titles=['cols_ind'],
                                                      format='%d',
                                                      font='Arial 8')),
                          Item('values',
                               show_label=False,
                               style='readonly',
                               editor=ArrayViewEditor(titles=['values'],
                                                      format='%lf',
                                                      font='Arial 8'))),
                      label='Matrix properties:',
                      show_border=True),
                title='Block CSR matrix viewer',
                width=0.5,
                height=0.5,
                resizable=True)
Exemple #13
0
class OCCModel(HasTraits):
    shapes = List
    
    shape_list = Instance(ShapeList)

    traits_view=View(HSplit(
                    Item('shape_list', editor=occ_tree, show_label=False,
                         width=-300),
                    Item('shape_list', editor=CustomEditor(MakeCanvas),
                            show_label=False, resizable=True),
                        id="occ.traits.test_feature_model_layout",
                        dock="fixed"
                        ),
                    resizable=True,
                    width=1000,
                    height=800,
                    id="occ.traits.test_feature_model"
                    )
                    
    def _shapes_changed(self, vnew):
        self.shape_list = ShapeList(shapes=vnew)
class PythonBrowser ( HasPrivateTraits ):

    dir       = Directory
    files     = List( FileInfo )    
    file_info = Instance( FileInfo )
    code      = Code
    
    view = View(
        HSplit(
            Item( 'dir', style = 'custom' ),
            VSplit( 
                Item( 'files', editor = tabular_editor ),
                Item( 'code',  style = 'readonly' ),
                show_labels = False ),
            show_labels = False
        ),
        resizable = True,
        width     = 0.75,
        height    = 0.75
    )
    
    #-- Event Handlers ---------------------------------------------------------
    
    def _dir_changed ( self, dir ):
        self.files = [ FileInfo( file_name = join( dir, name ) )
                       for name in listdir( dir )
                       if ((splitext( name )[1] == '.py') and 
                           isfile( join( dir, name ) )) ]
                           
    def _file_info_changed ( self, file_info ):
        fh = None
        try:
            fh = open( file_info.file_name, 'rb' )
            self.code = fh.read()
        except:
            pass
            
        if fh is not None:
            fh.close()
Exemple #15
0
class EqualizerDesigner(HasTraits):
    '''均衡器设计器的主界面'''

    equalizers = Instance(Equalizers)

    # 保存绘图数据的对象
    plot_data = Instance(AbstractPlotData)

    # 绘制波形图的容器
    container = Instance(Component)

    plot_gain = Instance(Component)
    plot_phase = Instance(Component)
    save_button = Button("Save")
    load_button = Button("Load")
    export_button = Button("Export")

    view = View(VGroup(
        HGroup(Item("load_button"),
               Item("save_button"),
               Item("export_button"),
               show_labels=False),
        HSplit(
            VGroup(
                Item("equalizers", style="custom", show_label=False),
                show_border=True,
            ),
            Item("container",
                 editor=ComponentEditor(size=(800, 300)),
                 show_label=False),
        )),
                resizable=True,
                width=800,
                height=500,
                title="Equalizer Designer")

    def _create_plot(self, data, name, type="line"):
        p = Plot(self.plot_data)
        p.plot(data, name=name, title=name, type=type)
        p.tools.append(PanTool(p))
        zoom = ZoomTool(component=p, tool_mode="box", always_on=False)
        p.overlays.append(zoom)
        p.title = name
        p.index_scale = "log"
        return p

    def __init__(self):
        super(EqualizerDesigner, self).__init__()
        self.plot_data = ArrayPlotData(f=FREQS, gain=[], phase=[])
        self.plot_gain = self._create_plot(("f", "gain"), "Gain(dB)")
        self.plot_phase = self._create_plot(("f", "phase"), "Phase(degree)")
        self.container = VPlotContainer()
        self.container.add(self.plot_phase)
        self.container.add(self.plot_gain)
        self.plot_gain.padding_bottom = 20
        self.plot_phase.padding_top = 20

    def _equalizers_default(self):
        return Equalizers()

    @on_trait_change("equalizers.h")
    def redraw(self):
        gain = 20 * np.log10(np.abs(self.equalizers.h))
        phase = np.angle(self.equalizers.h, deg=1)
        self.plot_data.set_data("gain", gain)
        self.plot_data.set_data("phase", phase)

    def _save_button_fired(self):
        dialog = FileDialog(action="save as", wildcard='EQ files (*.eq)|*.eq')
        result = dialog.open()
        if result == OK:
            f = file(dialog.path, "wb")
            pickle.dump(self.equalizers, f)
            f.close()

    def _load_button_fired(self):
        dialog = FileDialog(action="open", wildcard='EQ files (*.eq)|*.eq')
        result = dialog.open()
        if result == OK:
            f = file(dialog.path, "rb")
            self.equalizers = pickle.load(f)
            f.close()

    def _export_button_fired(self):
        dialog = FileDialog(action="save as", wildcard='c files (*.c)|*.c')
        result = dialog.open()
        if result == OK:
            self.equalizers.export(dialog.path)
Exemple #16
0
class RespFuncView(ModelView):
    def __init__(self, **kw):
        super(RespFuncView, self).__init__(**kw)
        self._redraw()
        self.on_trait_change(self._redraw, 'model.values')

    model = Instance(RespFunc)

    def _model_default(self):
        return RespFunc()

    figure = Instance(Figure)

    def _figure_default(self):
        figure = Figure(facecolor='white')
        figure.add_axes([0.08, 0.13, 0.85, 0.74])
        return figure

    data_changed = Event(True)

    count = Int

    def _redraw(self):
        self.count += 1
        print('redraw', self.count)

        # data post-processing
        #
        xdata, ydata = self.model.values
        if self.model.approach.plot.yvalues == 'forces':
            ylabel = 'pull-out force [N]'
        else:
            ydata = ydata / self.model.approach.Af
            ylabel = 'pull-out stress [N/m2]'

        title = self.model.boundary.type.BC
        if title[0] == 'd':
            xlabel = 'crack opening [m]'
        else:
            xlabel = 'displacement [m]'
        figure = self.figure
        axes = figure.axes[0]
        axes.clear()

        axes.plot(xdata, ydata, color='blue', linewidth=2, linestyle='solid')
        axes.set_xlabel(xlabel, weight='semibold')
        axes.set_ylabel(ylabel, weight='semibold')
        axes.set_title( title, \
                        size='large', color='black', \
                        weight='bold', position=( .5, 1.03 ) )
        axes.set_axis_bgcolor(color='white')
        axes.ticklabel_format(scilimits=(-3., 4.))
        axes.grid(color='gray', linestyle='--', linewidth=0.1, alpha=0.4)

        self.data_changed = True

    plot_button = Button('Plot pull-out')

    def _plot_button_fired(self):
        self._redraw()

    traits_view = View(
        HSplit(
            VGroup(
                Item('@model.boundary', show_label=False),
                Item('@model.approach', show_label=False),
                id='rf.model',
                dock='tab',
                label='pull-out model',
            ),
            VGroup(
                Item('figure',
                     editor=MPLFigureEditor(),
                     resizable=True,
                     show_label=False),
                #Item('plot_button', show_label = False),
                label='plot sheet',
                id='rf.figure_window',
                dock='tab',
            ),
            id='rf.viewmodel.hsplit',
        ),
        title='Response Function',
        id='rf.viewmodel',
        dock='tab',
        kind='live',
        resizable=True,
        height=0.8,
        width=0.8,
        buttons=[OKButton])

    def open(self, uiinfo):
        file_name = open_file(filter=['*.pst'],
                              extensions=[FileInfo(), TextInfo()])
        if file_name == '':
            return

        file = open(file_name, 'r')
        self.model = pickle.load(file)
        file.close()

    def save(self, uiinfo):
        file_name = save_file(filter=['*.pst'],
                              extensions=[FileInfo(), TextInfo()])
        if file_name == '':
            return

        print('writing into', file_name)
        file = open(file_name, 'w')
        pickle.dump(self.model, file)
        file.close()
Exemple #17
0
class CSModelView(ModelView):

    model = Instance(ClampSetup)

    def _model_default(self):
        return ClampSetup()

    figure = Instance(Figure)

    def _figure_default(self):
        figure = Figure(facecolor='white')
        figure.add_axes([0.08, 0.13, 0.85, 0.74])
        return figure

    data_changed = Event

    @on_trait_change('model.+modified')
    def refresh(self):

        figure = self.figure
        axes = figure.gca()
        axes.clear()

        cs = self.model
        xu, u, xe, e = cs.get_values()

        axes.set_xlabel('position on yarn', weight='semibold')
        axes.set_axis_bgcolor(color='white')
        axes.ticklabel_format(scilimits=(-3., 4.))
        axes.grid(color='gray', linestyle='--', linewidth=0.5, alpha=0.7)
        if cs.switch == 'strains':
            axes.plot(xe, e, lw=2, color='blue')
            axes.set_ylabel('strains [-]', weight='semibold')
            axes.plot(array([cs.l1, cs.l1]),
                      array([0, max(e)]),
                      lw=2,
                      color='red',
                      linestyle='dashed')
            axes.plot(array([cs.l1 + cs.L, cs.l1 + cs.L]),
                      array([0, max(e)]),
                      lw=2,
                      color='red',
                      linestyle='dashed')
            axes.text(cs.l1 + cs.L / 2,
                      max(e) * 0.95,
                      'clamp',
                      size='large',
                      ha='center')
            axes.text(cs.l1 + cs.L + cs.lt / 2,
                      max(e) * 0.95,
                      'tested length',
                      size='large',
                      ha='center')
        elif cs.switch == 'displacement':
            axes.plot(xu, u, lw=2, color='blue')
            axes.set_ylabel('displacement [m]', weight='semibold')
            axes.plot(array([cs.l1, cs.l1]),
                      array([0, max(u)]),
                      lw=2,
                      color='red',
                      linestyle='dashed')
            axes.plot(array([cs.l1 + cs.L, cs.l1 + cs.L]),
                      array([0, max(u)]),
                      lw=2,
                      color='red',
                      linestyle='dashed')
            axes.text(cs.l1 + cs.L / 2,
                      max(u) * 0.95,
                      'clamp',
                      size='large',
                      ha='center')
            axes.text(cs.l1 + cs.L + cs.lt / 2,
                      max(u) * 0.95,
                      'tested length',
                      size='large',
                      ha='center')
        else:
            print 'NOT YET IMPLEMENTED'


#            axes.plot(xslip, yslip, lw = 2, color = 'blue')
#            axes.set_ylabel('slip in clamp [m]', weight = 'semibold')
#            axes.set_xlabel('position in clamp [mm]', weight = 'semibold')

        self.data_changed = True

    traits_view = View(HSplit(
        VGroup(
            Item('model@', show_label=False, resizable=True),
            label='Material parameters',
            id='cs.viewmodel.model',
            dock='tab',
        ),
        VSplit(
            VGroup(
                Item('figure',
                     editor=MPLFigureEditor(),
                     resizable=True,
                     show_label=False),
                label='yarn displacement',
                id='cs.viewmodel.plot_window',
                dock='tab',
            ),
            id='cs.viewmodel.right',
        ),
        id='cs.viewmodel.splitter',
    ),
                       title='tested yarn',
                       id='cs.viewmodel',
                       dock='tab',
                       resizable=True,
                       buttons=[OKButton],
                       height=0.8,
                       width=0.8)
Exemple #18
0
class MayaviViewer(HasTraits):
    """
    This class represents a Mayavi based viewer for the particles.  They
    are queried from a running solver.
    """

    particle_arrays = List(Instance(ParticleArrayHelper), [])
    pa_names = List(Str, [])

    client = Instance(MultiprocessingClient)

    host = Str('localhost', desc='machine to connect to')
    port = Int(8800, desc='port to use to connect to solver')
    authkey = Password('pysph', desc='authorization key')
    host_changed = Bool(True)

    scene = Instance(MlabSceneModel, ())

    controller = Property()

    ########################################
    # Timer traits.
    timer = Instance(Timer)
    interval = Range(2,
                     20.0,
                     5.0,
                     desc='frequency in seconds with which plot is updated')

    ########################################
    # Solver info/control.
    current_time = Float(0.0, desc='the current time in the simulation')
    iteration = Int(0, desc='the current iteration number')
    pause_solver = Bool(False, desc='if the solver should be paused')

    ########################################
    # The layout of the dialog created
    view = View(HSplit(
        Group(
            Group(
                Item(name='host'),
                Item(name='port'),
                Item(name='authkey'),
                label='Connection',
            ),
            Group(
                Item(name='current_time'),
                Item(name='iteration'),
                Item(name='pause_solver'),
                Item(name='interval'),
                label='Solver',
            ),
            Group(
                Item(name='particle_arrays',
                     style='custom',
                     show_label=False,
                     editor=ListEditor(use_notebook=True,
                                       deletable=False,
                                       page_name='.name'))),
        ),
        Item('scene',
             editor=SceneEditor(scene_class=MayaviScene),
             height=480,
             width=500,
             show_label=False),
    ),
                resizable=True,
                title='Mayavi Particle Viewer')

    ######################################################################
    # `MayaviViewer` interface.
    ######################################################################
    @on_trait_change('scene.activated')
    def start_timer(self):
        # Just accessing the timer will start it.
        t = self.timer
        if not t.IsRunning():
            t.Start(int(self.interval * 1000))

    @on_trait_change('scene.activated')
    def update_plot(self):
        # do not update if solver is paused
        if self.pause_solver:
            return
        controller = self.controller
        if controller is None:
            return

        self.current_time = controller.get_t()
        for idx, name in enumerate(self.pa_names):
            pa = controller.get_named_particle_array(name)
            self.particle_arrays[idx].particle_array = pa

    ######################################################################
    # Private interface.
    ######################################################################
    @on_trait_change('host,port,authkey')
    def _mark_reconnect(self):
        self.host_changed = True

    def _get_controller(self):
        ''' get the controller, also sets the iteration count '''
        reconnect = self.host_changed

        if not reconnect:
            try:
                c = self.client.controller
                self.iteration = c.get_count()
            except Exception as e:
                logger.info(
                    'Error: no connection or connection closed: reconnecting')
                reconnect = True
                self.client = None

        if reconnect:
            self.host_changed = False
            try:
                if MultiprocessingClient.is_available((self.host, self.port)):
                    self.client = MultiprocessingClient(address=(self.host,
                                                                 self.port),
                                                        authkey=self.authkey)
                else:
                    return None
            except Exception as e:
                logger.info('Could not connect: check if solver is running')
                return None
            c = self.client.controller
            self.iteration = c.get_count()

        return self.client.controller

    def _client_changed(self, old, new):
        if self.client is None:
            return
        else:
            self.pa_names = self.client.controller.get_particle_array_names()

        self.scene.mayavi_scene.children[:] = []
        self.particle_arrays = [
            ParticleArrayHelper(scene=self.scene, name=x)
            for x in self.pa_names
        ]
        # Turn on the legend for the first particle array.
        if len(self.particle_arrays) > 0:
            self.particle_arrays[0].show_legend = True

    def _timer_event(self):
        # catch all Exceptions else timer will stop
        try:
            self.update_plot()
        except Exception as e:
            logger.info('Exception: %s caught in timer_event' % e)

    def _interval_changed(self, value):
        t = self.timer
        if t is None:
            return
        if t.IsRunning():
            t.Stop()
            t.Start(int(value * 1000))

    def _timer_default(self):
        return Timer(int(self.interval * 1000), self._timer_event)

    def _pause_solver_changed(self, value):
        c = self.client.controller
        if value:
            c.pause_on_next()
        else:
            c.cont()
Exemple #19
0
class tcWindow(HasTraits):
    project = tcProject
    plot = tcPlot

    def __init__(self, project):
        self.project = project
        self.plot = create_timechart_container(project)
        self.plot_range_tools = self.plot.range_tools
        self.plot_range_tools.on_trait_change(self._selection_time_changed,
                                              "time")
        self.trait_view().title = self.get_title()

    def get_title(self):
        if self.project.filename == "dummy":
            return "PyTimechart: Please Open a File"
        return "PyTimechart:" + self.project.filename

    # Create an action that exits the application.
    status = Str("Welcome to PyTimechart")
    traits_view = View(
        HSplit(
            VSplit(
                Item('project',
                     show_label=False,
                     editor=InstanceEditor(view='process_view'),
                     style='custom',
                     width=150),
                #                Item('plot_range_tools', show_label = False, editor=InstanceEditor(view = 'selection_view'), style='custom',width=150,height=100)
            ),
            Item('plot', show_label=False, editor=ComponentEditor()),
        ),
        toolbar=ToolBar(*_create_toolbar_actions(),
                        image_size=(24, 24),
                        show_tool_names=False),
        menubar=MenuBar(*_create_menubar_actions()),
        statusbar=[
            StatusItem(name='status'),
        ],
        resizable=True,
        width=1280,
        height=1024,
        handler=tcActionHandler())

    def _on_open_trace_file(self):
        if open_file(None) and self.project.filename == "dummy":
            self._ui.dispose()

    def _on_view_properties(self):
        self.plot.options.edit_traits()

    def _on_exit(self, n=None):
        self.close()
        sys.exit(0)

    def close(self, n=None):
        pass

    def _on_about(self):
        aboutBox().edit_traits()

    def _on_doc(self):
        browse_doc()

    def _selection_time_changed(self):
        self.status = "selection time:%s" % (self.plot_range_tools.time)
Exemple #20
0
class PointSelectionDemo(HasTraits):
    color = Enum(Colors.keys())
    green_selection = List()
    red_selection = List()
    plot = Instance(Plot)
    data = Instance(ArrayPlotData)

    traits_view = View(HSplit(
        Item('plot', editor=ComponentEditor(), show_label=False),
        VGroup(
            Item("color", show_label=False, style="custom"),
            Heading(u"绿色选择点"),
            Item("green_selection", show_label=False, style="readonly"),
            Heading(u"红色选择点"),
            Item("red_selection", show_label=False, style="readonly"),
        )),
                       width=800,
                       height=400,
                       resizable=True,
                       title=u"数据点选择演示")

    def __init__(self, **traits):
        super(PointSelectionDemo, self).__init__(**traits)
        x = np.random.rand(100)
        y = np.random.rand(100)
        data = ArrayPlotData(x=x, y=y)

        plot = Plot(data, padding=25)
        self.scatter = scatter = plot.plot(("x", "y"),
                                           type="scatter",
                                           marker_size=4)[0]

        self.select_tools = {}
        for i, c in enumerate(Colors.keys()):
            hover_name = "hover_%s" % c
            selection_name = "selections_%s" % c
            self.select_tools[c] = ScatterInspector(
                scatter,
                hover_metadata_name=hover_name,
                selection_metadata_name=selection_name)

            scatter.overlays.append(
                ScatterInspectorOverlay(
                    scatter,
                    hover_metadata_name=hover_name,
                    selection_metadata_name=selection_name,
                    hover_color="transparent",
                    hover_outline_color=c,
                    hover_marker_size=6,
                    hover_line_width=1,
                    selection_color=Colors[c],
                ))

        scatter.active_tool = self.select_tools[self.color]
        scatter.index.on_trait_change(self.selection_changed,
                                      'metadata_changed')
        self.plot = plot
        self.data = data

    def _color_changed(self):
        self.scatter.active_tool = self.select_tools[self.color]

    def selection_changed(self):
        x = self.scatter.index.get_data()
        y = self.scatter.value.get_data()
        metadata = self.scatter.index.metadata
        selection = metadata.get("selections_green", [])
        self.green_selection = [
            "%d, (%f, %f)" % (s, x[s], y[s]) for s in selection
        ]
        selection = metadata.get("selections_red", [])
        self.red_selection = [
            "%d, (%f, %f)" % (s, x[s], y[s]) for s in selection
        ]
class Graph(HasTraits):
    """
    绘图组件,包括左边的数据选择控件和右边的绘图控件
    """
    name = Str # 绘图名,显示在标签页标题和绘图标题中
    data_source = Instance(DataSource) # 保存数据的数据源
    figure = Instance(Figure) # 控制绘图控件的Figure对象
    selected_xaxis = Str # X轴所用的数据名
    selected_items = List # Y轴所用的数据列表

    clear_button = Button(u"清除") # 快速清除Y轴的所有选择的数据

    view = View(
        HSplit( # HSplit分为左右两个区域,中间有可调节宽度比例的调节手柄
            # 左边为一个组
            VGroup(
                Item("name"),   # 绘图名编辑框
                Item("clear_button"), # 清除按钮
                Heading(u"X轴数据"),  # 静态文本
                # X轴选择器,用EnumEditor编辑器,即ComboBox控件,控件中的候选数据从
                # data_source的names属性得到
                Item("selected_xaxis", editor=
                    EnumEditor(name="object.data_source.names", format_str=u"%s")),
                Heading(u"Y轴数据"), # 静态文本
                # Y轴选择器,由于Y轴可以多选,因此用CheckBox列表编辑,按两列显示
                Item("selected_items", style="custom", 
                     editor=CheckListEditor(name="object.data_source.names", 
                            cols=2, format_str=u"%s")),
                show_border = True, # 显示组的边框
                scrollable = True,  # 组中的控件过多时,采用滚动条
                show_labels = False # 组中的所有控件都不显示标签
            ),
            # 右边绘图控件
            Item("figure", editor=MPLFigureEditor(), show_label=False, width=600)
        )        
    )

    def _name_changed(self):
        """
        当绘图名发生变化时,更新绘图的标题
        """
        axe = self.figure.axes[0]
        axe.set_title(self.name)
        self.figure.canvas.draw()

    def _clear_button_fired(self):
        """
        清除按钮的事件处理
        """
        self.selected_items = []
        self.update()

    def _figure_default(self):
        """
        figure属性的缺省值,直接创建一个Figure对象
        """
        figure = Figure()
        figure.add_axes([0.1, 0.1, 0.85, 0.80]) #添加绘图区域,四周留有边距
        return figure

    def _selected_items_changed(self):
        """
        Y轴数据选择更新
        """
        self.update()

    def _selected_xaxis_changed(self):
        """
        X轴数据选择更新
        """    
        self.update()

    def update(self):
        """
        重新绘制所有的曲线
        """    
        axe = self.figure.axes[0]
        axe.clear()
        try:
            xdata = self.data_source.data[self.selected_xaxis]
        except:
            return 
        for field in self.selected_items:
            axe.plot(xdata, self.data_source.data[field], label=field)
        axe.set_xlabel(self.selected_xaxis)
        axe.set_title(self.name)
        axe.legend()
        self.figure.canvas.draw()
Exemple #22
0
class PlotOMatic(HasTraits):
    io_driver_list = Instance(IODriverList)
    variables = Instance(Variables)
    viewers = Instance(Viewers)
    selected_viewer = Instance(Viewer)

    handler = PlotOMaticHandler()

    viewer_node = TreeNode(node_for=[Viewer],
                           auto_open=True,
                           label='name',
                           menu=Menu(handler.remove_viewer_action),
                           icon_path='icons/',
                           icon_item='plot.png')

    tree_editor = TreeEditor(nodes=[
        TreeNode(
            node_for=[IODriverList],
            auto_open=True,
            children='io_drivers',
            label='=Input Drivers',
            menu=Menu(handler.refresh_tree_action,
                      handler.add_io_driver_actions_menu),
            view=View(),
        ),
        TreeNode(node_for=[IODriver],
                 auto_open=True,
                 children='_decoders',
                 label='name',
                 add=[DataDecoder],
                 menu=Menu(handler.remove_io_driver_action,
                           handler.refresh_tree_action,
                           handler.add_decoder_actions_menu),
                 icon_path='icons/',
                 icon_open='input.png',
                 icon_group='input.png'),
        TreeNode(node_for=[DataDecoder],
                 auto_open=True,
                 children='',
                 label='name',
                 menu=Menu(handler.refresh_tree_action,
                           handler.remove_decoder_action),
                 icon_path='icons/',
                 icon_item='decoder.png'),
        TreeNode(node_for=[IODriverList],
                 auto_open=True,
                 children='viewers',
                 label='=Viewers',
                 menu=Menu(handler.refresh_tree_action,
                           handler.add_viewer_actions_menu),
                 view=View()), viewer_node
    ],
                             hide_root=True,
                             orientation='vertical')

    view = View(HSplit(
        Item(name='io_driver_list',
             editor=tree_editor,
             resizable=True,
             show_label=False,
             width=.32),
        VSplit(
            Item(name='selected_viewer',
                 style='custom',
                 resizable=True,
                 show_label=False,
                 editor=InstanceEditor(view='view')),
            Item(name='variables', show_label=False, style='custom',
                 height=.3))),
                menubar=MenuBar(handler.file_menu, handler.data_menu),
                title='Plot-o-matic',
                resizable=True,
                width=1000,
                height=600,
                handler=PlotOMaticHandler())

    def __init__(self, **kwargs):
        HasTraits.__init__(self, **kwargs)
        self.viewer_node.on_select = self.click_viewer

    def click_viewer(self, viewer):
        self.selected_viewer = viewer
        self.viewers.select_viewer(viewer)

    def start(self):
        self.io_driver_list.start_all()
        self.viewers.start()

    def stop(self):
        self.viewers.stop()
        self.io_driver_list.stop_all()

    def get_config(self):
        config = {}
        config['io_drivers'] = self.io_driver_list.get_config()
        config['viewers'] = self.viewers.get_config()
        return config

    def set_config(self, config):
        if 'io_drivers' in config:
            self.io_driver_list.set_config(config['io_drivers'])
        if 'viewers' in config:
            self.viewers.set_config(config['viewers'])
        self.variables.clear()
Exemple #23
0
class ImageSelections(HasTraits):
    analysis = Instance(MultiSelections, transient=True)
    figure = Instance(Figure, transient=True)
    data = Array

    def _analysis_default(self):
        return MultiSelections()

    def _figure_default(self):
        def selection_callback(pos1, pos2):
            if pos1 == pos2:
                self.analysis.selection.set_from_corners(pos1)
            else:
                self.analysis.selection.set_from_corners(pos1, pos2)

        figure = Figure(process_selection=selection_callback)
        return figure

    @on_trait_change('data')
    def image_show(self):
        self.figure.update_image(self.data)

    @on_trait_change('analysis.updated')
    def show_selection2(self):
        def plot(selection, color, index):
            s = selection
            x, y = list(
                map(lambda *args: args, s.top_left, s.top_right,
                    s.bottom_right, s.bottom_left, s.top_left))
            self.figure.plot_data(x, y, str(index), color)

        for i in range(len(self.analysis.selections) + 1):
            self.figure.del_plot(str(i))


#        self.figure.del_plot('all')

        for index, selection in enumerate(self.analysis.selections):
            if self.analysis.index == index:
                color = 'red'
            else:
                color = 'black'
            plot(selection, color, index)

    view = View(
        HSplit(
            Item('figure', style='custom', width=0.5),
            Group(Item('analysis',
                       style="custom",
                       resizable=True,
                       width=0.5,
                       show_label=False),
                  scrollable=True),
            show_labels=False,
        ),
        width=1200,
        height=800,
        resizable=True,
        #                    statusbar = [ StatusItem( name = 'error')],
        #                    title = 'Image selector'
    )
class FieldExplorer(HasTraits):
    scene = Instance(SceneModel, ())
    wire = Instance(WireLoop)

    interact = Bool(False)
    ipl = Instance(tvtk.PlaneWidget, (), {
        'resolution': 50,
        'normal': [1., 0., 0.]
    })
    #plane_src = Instance(tvtk.PlaneSource, ())
    calc_B = Instance(tvtk.ProgrammableFilter, ())

    glyph = Instance(tvtk.Glyph3D, (), {'scale_factor': 0.02})
    scale_factor = DelegatesTo("glyph")

    lm = Instance(LUTManager, ())

    traits_view = View(HSplit(
        Item("scene", style="custom", editor=SceneEditor(), show_label=False),
        VGroup(Item("wire", style="custom", show_label=False),
               Item("interact"), Item("scale_factor"), Item("lm")),
    ),
                       resizable=True,
                       width=700,
                       height=600)

    def _interact_changed(self, i):
        self.ipl.interactor = self.scene.interactor
        self.ipl.place_widget()
        if i:
            self.ipl.on()
        else:
            self.ipl.off()

    def make_probe(self):
        src = self.ipl.poly_data_algorithm

        map = tvtk.PolyDataMapper(lookup_table=self.lm.lut)
        act = tvtk.Actor(mapper=map)

        calc_B = self.calc_B
        calc_B.input = src.output

        def execute():
            print "calc fields!"
            output = calc_B.poly_data_output
            points = output.points.to_array().astype('d')
            nodes = self.wire.nodes.astype('d')
            vectors = calc_wire_B_field(nodes, points, self.wire.radius)
            output.point_data.vectors = vectors
            mag = np.sqrt((vectors**2).sum(axis=1))
            map.scalar_range = (mag.min(), mag.max())

        calc_B.set_execute_method(execute)

        cone = tvtk.ConeSource(height=0.05, radius=0.01, resolution=15)
        cone.update()

        glyph = self.glyph
        glyph.input_connection = calc_B.output_port
        glyph.source = cone.output
        glyph.scale_mode = 'scale_by_vector'
        glyph.color_mode = 'color_by_vector'

        map.input_connection = glyph.output_port
        self.scene.add_actor(act)

    def on_update(self):
        self.calc_B.modified()
        self.scene.render()

    def _wire_changed(self, anew):
        anew.on_trait_change(self.on_update, "update")
        self.scene.add_actor(anew.actor)
Exemple #25
0
class TriangleWave(HasTraits):
    # 指定三角波的最窄和最宽范围,由于Range类型不能将常数和Traits属性名混用
    # 所以定义这两个值不变的Trait属性
    low = Float(0.02)
    hi = Float(1.0)

    # 三角波形的宽度
    wave_width = Range("low", "hi", 0.5)

    # 三角波的顶点C的x轴坐标
    length_c = Range("low", "wave_width", 0.5)

    # 三角波的定点的y轴坐标
    height_c = Float(1.0)

    # FFT计算所使用的取样点数,这里用一个Enum类型的属性以供用户从列表中选择
    fftsize = Enum([(2**x) for x in range(6, 12)])

    # FFT频谱图的x轴上限值
    fft_graph_up_limit = Range(0, 400, 20)

    # 用于显示FFT的结果
    peak_list = Str

    # 采用多少个频率合成三角波
    N = Range(1, 40, 4)

    # 保存绘图数据的对象
    plot_data = Instance(AbstractPlotData)

    # 绘制波形图的容器
    plot_wave = Instance(Component)

    # 绘制FFT频谱图的容器
    plot_fft = Instance(Component)

    # 包括两个绘图的容器
    container = Instance(Component)

    # 设置用户界面的视图, 注意一定要指定窗口的大小,这样绘图容器才能正常初始化
    view = View(HSplit(
        VSplit(
            VGroup(Item("wave_width", editor=scrubber, label="波形宽度"),
                   Item("length_c", editor=scrubber, label="最高点x坐标"),
                   Item("height_c", editor=scrubber, label="最高点y坐标"),
                   Item("fft_graph_up_limit", editor=scrubber, label="频谱图范围"),
                   Item("fftsize", label="FFT点数"), Item("N", label="合成波频率数")),
            Item("peak_list",
                 style="custom",
                 show_label=False,
                 width=100,
                 height=250)),
        VGroup(Item("container",
                    editor=ComponentEditor(size=(600, 300)),
                    show_label=False),
               orientation="vertical")),
                resizable=True,
                width=800,
                height=600,
                title="三角波FFT演示")

    # 创建绘图的辅助函数,创建波形图和频谱图有很多类似的地方,因此单独用一个函数以
    # 减少重复代码
    def _create_plot(self, data, name, type="line"):
        p = Plot(self.plot_data)
        p.plot(data, name=name, title=name, type=type)
        p.tools.append(PanTool(p))
        zoom = ZoomTool(component=p, tool_mode="box", always_on=False)
        p.overlays.append(zoom)
        p.title = name
        return p

    def __init__(self):
        # 首先需要调用父类的初始化函数
        super(TriangleWave, self).__init__()

        # 创建绘图数据集,暂时没有数据因此都赋值为空,只是创建几个名字,以供Plot引用
        self.plot_data = ArrayPlotData(x=[], y=[], f=[], p=[], x2=[], y2=[])

        # 创建一个垂直排列的绘图容器,它将频谱图和波形图上下排列
        self.container = VPlotContainer()

        # 创建波形图,波形图绘制两条曲线: 原始波形(x,y)和合成波形(x2,y2)
        self.plot_wave = self._create_plot(("x", "y"), "Triangle Wave")
        self.plot_wave.plot(("x2", "y2"), color="red")

        # 创建频谱图,使用数据集中的f和p
        self.plot_fft = self._create_plot(("f", "p"), "FFT", type="scatter")

        # 将两个绘图容器添加到垂直容器中
        self.container.add(self.plot_wave)
        self.container.add(self.plot_fft)

        # 设置
        self.plot_wave.x_axis.title = "Samples"
        self.plot_fft.x_axis.title = "Frequency pins"
        self.plot_fft.y_axis.title = "(dB)"

        # 改变fftsize为1024,因为Enum的默认缺省值为枚举列表中的第一个值
        self.fftsize = 1024

    # FFT频谱图的x轴上限值的改变事件处理函数,将最新的值赋值给频谱图的响应属性
    def _fft_graph_up_limit_changed(self):
        self.plot_fft.x_axis.mapper.range.high = self.fft_graph_up_limit

    def _N_changed(self):
        self.plot_sin_combine()

    # 多个trait属性的改变事件处理函数相同时,可以用@on_trait_change指定
    @on_trait_change("wave_width, length_c, height_c, fftsize")
    def update_plot(self):
        # 计算三角波
        global y_data
        x_data = np.arange(0, 1.0, 1.0 / self.fftsize)
        func = self.triangle_func()
        # 将func函数的返回值强制转换成float64
        y_data = np.cast["float64"](func(x_data))

        # 计算频谱
        fft_parameters = np.fft.fft(y_data) / len(y_data)

        # 计算各个频率的振幅
        fft_data = np.clip(
            20 * np.log10(np.abs(fft_parameters))[:self.fftsize / 2 + 1], -120,
            120)

        # 将计算的结果写进数据集
        self.plot_data.set_data("x", np.arange(0, self.fftsize))  # x坐标为取样点
        self.plot_data.set_data("y", y_data)
        self.plot_data.set_data("f", np.arange(0, len(fft_data)))  # x坐标为频率编号
        self.plot_data.set_data("p", fft_data)

        # 合成波的x坐标为取样点,显示2个周期
        self.plot_data.set_data("x2", np.arange(0, 2 * self.fftsize))

        # 更新频谱图x轴上限
        self._fft_graph_up_limit_changed()

        # 将振幅大于-80dB的频率输出
        peak_index = (fft_data > -80)
        peak_value = fft_data[peak_index][:20]
        result = []
        for f, v in zip(np.flatnonzero(peak_index), peak_value):
            result.append("%s : %s" % (f, v))
        self.peak_list = "\n".join(result)

        # 保存现在的fft计算结果,并计算正弦合成波
        self.fft_parameters = fft_parameters
        self.plot_sin_combine()

    # 计算正弦合成波,计算2个周期
    def plot_sin_combine(self):
        index, data = fft_combine(self.fft_parameters, self.N, 2)
        self.plot_data.set_data("y2", data)

    # 返回一个ufunc计算指定参数的三角波
    def triangle_func(self):
        c = self.wave_width
        c0 = self.length_c
        hc = self.height_c

        def trifunc(x):
            x = x - int(x)  # 三角波的周期为1,因此只取x坐标的小数部分进行计算
            if x >= c: r = 0.0
            elif x < c0: r = x / c0 * hc
            else: r = (c - x) / (c - c0) * hc
            return r

        # 用trifunc函数创建一个ufunc函数,可以直接对数组进行计算, 不过通过此函数
        # 计算得到的是一个Object数组,需要进行类型转换
        return np.frompyfunc(trifunc, 1, 1)
Exemple #26
0
class FitGUI(ModelView):
    """ Implements a Model-View style controller and default view that provides 
        a matplolib graphical representation of an ImpedanceAnalysis model.
    """
    text_display = Str
    params_gui = Instance(ParameterSetGUI)
    fit_button = Button()
    plot = Instance(IPlot)
    has_fit = Bool(False)
    pick_mode = Int(0)

    view = View(
        HSplit(
            VGroup(
                Item(
                    'text_display',
                    style='custom',
                    show_label=False,
                    #springy = True,
                    height=0.50,
                    width=0.20,
                ),
                # VGrid(
                # Item('model.selection_low_index',  width=0.05,),
                # Item('model.selection_high_index', width=0.05,),
                Item(
                    'params_gui',
                    show_label=False,
                    style='custom',
                    springy=True,
                    #height=0.30,
                    width=0.20,
                ),
                Item(
                    'fit_button',
                    label="Run Fit",
                    show_label=False,
                    #style='custom',
                    #springy = True,
                    #height=0.30,
                    width=0.20,
                ),
                #     columns = 1,
                #    ),
            ),
            Item(
                'plot',
                #editor = MPLFigureEditor(), #this editor will automatically find and connect the _handle_onpick method for handling matplotlib's object picking events
                style='custom',
                show_label=False,
                height=0.80,
                width=0.60,
            ),
        ),
        height=0.80,
        width=0.80,
        resizable=True,
    )

    #--------------------------------------------------------------------------
    def run_fit(self):
        self.model.fit()
        self.has_fit = True
        new_params = self.model.params
        self.params_gui.model = new_params
        self.params_gui.render_fields()  #FIXME - to use a gentler field update
        self._print(self.model.fit_log, loc='front')
        self.update_plot()

#    def _plot_default(self):
#        return SimpleFunctionPlot()

    @on_trait_change('model')
    def update_all(self):
        self.params_gui = ParameterSetGUI(self.model.params)
        self._clear_display()
        self.update_plot()

    @on_trait_change('plot')
    def setup_onpick_handler(self):
        self.plot.register_onpick_handler(self._handle_onpick)

    def update_plot(self):
        self.plot.clear()
        Xs = []
        Ys = []
        #get all the data
        X_data, Y_data, W_data = self.model.get_data()
        Xs.append(X_data)
        Ys.append(Y_data)
        #get the data selection
        X_sel, Y_sel, W_sel = self.model.get_selection()
        Xs.append(X_sel)
        Ys.append(Y_sel)
        if self.has_fit:
            X_fit, Y_fit = self.model.interpolate(density=10)
            Xs.append(X_fit)
            Ys.append(Y_fit)
        self.plot.render(Xs, Ys, fmts=['b.', 'kx', 'r-'], pickable=[0])
        self.plot.redraw()

    def _fit_button_fired(self):
        self.run_fit()

    #--------------------------------------------------------------------------
    def _handle_onpick(self, event):
        "handles a data point pick event depending on the mode"
        #extract information from the event
        line = event.artist
        ind = event.ind[
            0]  #the selected data index as first (nearest) in the group
        X = line.get_xdata()
        Y = line.get_ydata()
        x = X[ind]
        y = Y[ind]
        pick_mode = self.pick_mode
        print event.__dict__
        if pick_mode == 0:
            self._print("\nlow point selected at index: %s (%e, %e)" %
                        (ind, x, y),
                        loc='front')
            self.model.selection_low_index = ind
            self.model.selection_high_index = Undefined
            self.pick_mode = 1
            time.sleep(0.1)
        elif pick_mode == 1:
            self._print("\nhigh point selected at index: %s (%e, %e)" %
                        (ind, x, y),
                        loc='front')
            self.model.selection_high_index = ind
            if self.model.selection_low_index != self.model.selection_high_index:
                self.run_fit()
            self.pick_mode = 0

    #--------------------------------------------------------------------------
    def _clear_display(self):
        self.text_display = ""

    def _print(self, text, indent="\t", level=0, newline='\n', loc='front'):
        text = str(text)
        if level >= 1:  #reformat the text to indent it
            text_lines = text.split(newline)
            space = indent * level
            text_lines = ["%s%s" % (space, line) for line in text_lines]
            text = newline.join(text_lines)
        if loc == 'end':
            self.text_display += text + newline
        elif loc == 'front':
            self.text_display = text + newline + self.text_display
        else:
            raise ValueError, "'loc' must be 'front' or 'end'"
Exemple #27
0
class Images(HasTraits):
    """Main class for image point selections
    """
    filenames = Instance(Filenames, ())
    analysis = Instance(RectangleSelections, transient=True)
    filters = List(Instance(BaseFilter))
    figure = Instance(Figure, transient=True)
    data = Array

    def _filters_default(self):
        return [Rotate(), GaussianFilter()]

    def _analysis_default(self):
        return RectangleSelections()

    def _figure_default(self):
        def selection_callback(pos1, pos2):
            try:
                if pos1 == pos2:
                    self.analysis.selection.set_from_points(pos1)
                else:
                    self.analysis.selection.set_from_points(pos1, pos2)
            except:
                pass

        figure = Figure(process_selection=selection_callback)
        return figure

    @on_trait_change('filenames.selected')
    def open_image(self):
        data = imread(self.filenames.selected)
        for f in self.filters:
            data = f.process(data)
        self.data = data

    @on_trait_change('data,analysis.updated')
    def image_show(self):
        try:
            self.figure.plot_image(self.data)
        except:
            pass

    @on_trait_change('analysis.updated')
    def show_selection2(self):
        def plot(selection, color, index):
            s = selection
            x, y = list(
                map(lambda *args: args, s.top_left, s.top_right,
                    s.bottom_right, s.bottom_left, s.top_left))
            self.figure.plot_data(x, y, str(index), color)

        for i in range(len(self.analysis.selections) + 1):
            self.figure.del_plot(str(i))

        for index, selection in enumerate(self.analysis.selections):
            if self.analysis.index == index:
                color = 'red'
            else:
                color = 'black'
            try:
                plot(selection, color, index)
            except:
                pass

    view = View(
        VSplit(HSplit(Item('figure', style='custom', width=0.6, height=0.7),
                      Group(Item('analysis',
                                 style="custom",
                                 resizable=True,
                                 width=0.4,
                                 height=0.7,
                                 show_label=False),
                            scrollable=True),
                      show_labels=False),
               HSplit(
                   Group(
                       Item('filenames',
                            style='custom',
                            show_label=False,
                            height=0.3)),
                   Item('filters@',
                        id='notebook',
                        show_label=False,
                        editor=ListEditor(use_notebook=True,
                                          deletable=False,
                                          selected='selected',
                                          export='DockWindowShell',
                                          page_name='.name_'))),
               show_labels=False),
        width=1000,
        height=800,
        resizable=True,
    )
Exemple #28
0
class ImageTimeseriesViewer(BaseDataViewer):

    plots = Dict

    plotdata = Instance(ArrayPlotData)
    image = Any

    time_index = Int
    time_points = Int
    time = Any

    traits_view = View(
        Tabbed(
            HSplit(
                VGroup(
                    Item('plot',
                         editor=ComponentEditor(),
                         show_label=False,
                         resizable=True,
                         label='View'),
                    Item("time_index",
                         style='custom',
                         editor=RangeEditor(low=0, high_name='time_points')),
                    Item("time", style='readonly'),
                ),
                Item('tasks', style='custom', show_label=False, label='Tasks'),
            ),
            Item('results', style='custom', show_label=False, label='Results'),
        ), )

    def _time_points_default(self):
        return self.data.shape[0] - 1

    def _time_index_default(self):
        return 0

    def _time_default(self):
        return self.get_data_time(0, 0)

    def _plotdata_default(self):
        data = self.get_data_slice(0, 0)
        plotdata = ArrayPlotData()
        plotdata.set_data('xy', data)
        return plotdata

    def _time_index_changed(self):
        self.select_xy_slice(self.time_index)

    def select_xy_slice(self, t):
        data = self.get_data_slice(t, 0)
        self.time = self.get_data_time(t, 0)
        self.plotdata.set_data('xy', data)
        self.image.invalidate_and_redraw()

    def reset(self):
        pass

    def redraw(self):
        self.image.invalidate_and_redraw()

    def get_plot(self):
        pixel_sizes = self.data_source.pixel_sizes
        shape = self.data.shape[1:]
        m = min(pixel_sizes)
        s = [int(d * sz / m) for d, sz in zip(shape, pixel_sizes)]
        plot_sizes = dict(xy=(s[1], s[0]))
        plot = Plot(
            self.plotdata,
            padding=30,
            fixed_preferred_size=plot_sizes['xy'],
        )
        image = plot.img_plot('xy', colormap=bone)[0]
        image.overlays.append(ZoomTool(image))
        image.tools.append(PanTool(image, drag_button='right'))
        imgtool = ImageInspectorTool(image)
        image.tools.append(imgtool)
        overlay = ImageInspectorOverlay(component=image,
                                        bgcolor='white',
                                        image_inspector=imgtool)
        image.overlays.append(overlay)
        self.image = image

        self.plots = dict(xy=image)
        return plot
# -*- coding: utf-8 -*-
Exemple #30
0
class MainWindow(HasTraits):
    parameter_file_collections = Instance(ParameterFileCollectionList)
    parameter_files = Instance(ParameterFileCollection)
    plot_frame_tabs = List(Instance(DataObject))
    open_parameterfile = Button
    shell = PythonValue

    def _shell_default(self):
        return globals()

    notebook_editor = ListEditor(editor=InstanceEditor(editable=True),
                                 use_notebook=True)

    traits_view = View(
        VSplit(
            HSplit(
                VGroup(
                    Item(
                        'parameter_file_collections',
                        width=120.0,
                        height=500.0,
                        show_label=False,
                        editor=TreeEditor(
                            editable=False,
                            nodes=[
                                TreeNode(
                                    node_for=[ParameterFileCollectionList],
                                    children='parameter_file_collections',
                                    label="=Data Collections"),
                                TreeNode(node_for=[ParameterFileCollection],
                                         children='parameter_files',
                                         label="name",
                                         view=View()),
                                TreeNode(node_for=[ParameterFile],
                                         children='data_objects',
                                         label="name",
                                         menu=Menu(
                                             Action(name='Slice',
                                                    action='object.do_slice'),
                                             Action(name='Project',
                                                    action='object.do_proj'),
                                             Action(name='VTK',
                                                    action='object.do_vtk')),
                                         view=View()),
                                TreeNode(node_for=[DataObject],
                                         children='',
                                         label="name"),
                            ],
                            show_icons=False),
                    ), Item('open_parameterfile', show_label=False)),
                Item('plot_frame_tabs',
                     style='custom',
                     editor=notebook_editor,
                     show_label=False,
                     height=500.0,
                     width=500.0),
            ),
            HGroup(
                #Item('shell', editor=ShellEditor(share=True),
                #show_label=False, height=120.0),
            ),
        ),
        resizable=True,
        width=800.0,
        height=660.0,
        title="reason v2 [prototype]")

    def _open_parameterfile_fired(self):
        print "OPENING"

    def _parameter_file_collections_default(self):
        return ParameterFileCollectionList()