def train(): env = Osillator() state_dim = 2 action_dim = 2 # reproducible # env.seed(RANDOMSEED) np.random.seed(RANDOMSEED) torch.manual_seed(RANDOMSEED) ppo = PPO(state_dim, action_dim, method=METHOD) global all_ep_r, update_plot, stop_plot all_ep_r = [] for ep in range(EP_MAX): s = env.reset() ep_r = 0 t0 = time.time() for t in range(EP_LEN): if RENDER: env.render() a = ppo.choose_action(s) u = gene_u(s, a, model_1, model_2) s_, _, done = env.step(u) # print(s, a, s_, r, done) # assert False r = 10 r -= WEIGHT * abs(np.clip(u, -1, 1)) * 20 r -= 1 / WEIGHT * (abs(s_[0]) + abs(s_[1])) if done and t < 95: r -= 100 ppo.store_transition( s, a, r ) # useful for pendulum since the nets are very small, normalization make it easier to learn s = s_ ep_r += r # update ppo if len(ppo.state_buffer) == BATCH_SIZE: ppo.finish_path(s_, done) ppo.update() # if done: # break ppo.finish_path(s_, done) print( 'Episode: {}/{} | Episode Reward: {:.4f} | Running Time: {:.4f}'. format(ep + 1, EP_MAX, ep_r, time.time() - t0)) if ep == 0: all_ep_r.append(ep_r) else: all_ep_r.append(all_ep_r[-1] * 0.9 + ep_r * 0.1) if PLOT_RESULT: update_plot.set() if (ep + 1) % 500 == 0 and ep >= 3000: ppo.save_model(path='ppo', ep=ep, weight=WEIGHT) if PLOT_RESULT: stop_plot.set() env.close()
# thread.daemon = True # thread.start() # if PLOT_RESULT: # drawer = Drawer() # drawer.plot() # drawer.save() # thread.join() train() assert False # test env = Osillator() state_dim = 2 action_dim = 2 ppo = PPO(state_dim, action_dim, method=METHOD) ppo.load_model() mean_epoch_reward = 0 for _ in range(TEST_EP): state = env.reset() for i in range(EP_LEN): if RENDER: env.render() action = ppo.choose_action(state, True) u = gene_u(state, action, model_1, model_2) next_state, reward, done = env.step(u) mean_epoch_reward += reward state = next_state if done: break print(mean_epoch_reward / TEST_EP) env.close()