def simuliateOneParameter(parameterDict, evalNum, randomSeed, dt): mujocoVisualize = False demoVisualize = False wolfSize = 0.075 sheepSize = 0.05 blockSize = 0.2 wolfColor = np.array([0.85, 0.35, 0.35]) sheepColor = np.array([0.35, 0.85, 0.35]) blockColor = np.array([0.25, 0.25, 0.25]) wolvesID = [0] sheepsID = [1] blocksID = [2] numWolves = len(wolvesID) numSheeps = len(sheepsID) numBlocks = len(blocksID) sheepMaxSpeed = 1.3 wolfMaxSpeed = 1.0 blockMaxSpeed = None agentsMaxSpeedList = [wolfMaxSpeed] * numWolves + [sheepMaxSpeed ] * numSheeps numAgents = numWolves + numSheeps numEntities = numAgents + numBlocks entitiesSizeList = [wolfSize] * numWolves + [sheepSize] * numSheeps + [ blockSize ] * numBlocks entityMaxSpeedList = [wolfMaxSpeed] * numWolves + [ sheepMaxSpeed ] * numSheeps + [blockMaxSpeed] * numBlocks entitiesMovableList = [True] * numAgents + [False] * numBlocks massList = [1.0] * numEntities isCollision = IsCollision(getPosFromAgentState) rewardWolf = RewardWolf(wolvesID, sheepsID, entitiesSizeList, isCollision) punishForOutOfBound = PunishForOutOfBound() rewardSheep = RewardSheep(wolvesID, sheepsID, entitiesSizeList, getPosFromAgentState, isCollision, punishForOutOfBound) rewardFunc = lambda state, action, nextState: \ list(rewardWolf(state, action, nextState)) + list(rewardSheep(state, action, nextState)) makePropertyList = MakePropertyList(transferNumberListToStr) #changeCollisionReleventParameter dmin = parameterDict['dmin'] dmax = parameterDict['dmax'] width = parameterDict['width'] midpoint = parameterDict['midpoint'] power = parameterDict['power'] timeconst = parameterDict['timeconst'] dampratio = parameterDict['dampratio'] geomIds = [1, 2, 3] keyNameList = ['@solimp', '@solref'] valueList = [[[dmin, dmax, width, midpoint, power], [timeconst, dampratio]] ] * len(geomIds) collisionParameter = makePropertyList(geomIds, keyNameList, valueList) #changeSize # geomIds=[1,2] # keyNameList=['@size'] # valueList=[[[0.075,0.075]],[[0.1,0.1]]] # sizeParameter=makePropertyList(geomIds,keyNameList,valueList) #load env xml and change some geoms' property physicsDynamicsPath = os.path.join( dirName, '..', '..', 'environment', 'mujocoEnv', 'variousCollision_numBlocks=1_numSheeps=1_numWolves=1dt={}.xml'.format( dt)) with open(physicsDynamicsPath) as f: xml_string = f.read() envXmlDict = xmltodict.parse(xml_string.strip()) envXmlPropertyDictList = [collisionParameter] changeEnvXmlPropertFuntionyList = [changeGeomProperty] for propertyDict, changeXmlProperty in zip( envXmlPropertyDictList, changeEnvXmlPropertFuntionyList): envXmlDict = changeXmlProperty(envXmlDict, propertyDict) envXml = xmltodict.unparse(envXmlDict) # print(envXmlDict['mujoco']['worldbody']['body'][0]) physicsModel = mujoco.load_model_from_xml(envXml) physicsSimulation = mujoco.MjSim(physicsModel) # MDP function qPosInit = [0, 0] * numAgents qVelInit = [0, 0] * numAgents qVelInitNoise = 0 qPosInitNoise = 1 # reset=ResetUniformWithoutXPos(physicsSimulation, qPosInit, qVelInit, numAgents, numBlocks,qPosInitNoise, qVelInitNoise) # fixReset=ResetFixWithoutXPos(physicsSimulation, qPosInit, qVelInit, numAgents,numBlocks) # blocksState=[[0,-0.8,0,0]] # reset=lambda :fixReset([-0.5,0.8,-0.5,0,0.5,0.8],[0,0,0,0,0,0],blocksState) isTerminal = lambda state: False numSimulationFrames = int(0.1 / dt) print(numSimulationFrames) # dt=0.01 damping = 2.5 reshapeAction = lambda action: action # transit = TransitionFunctionWithoutXPos(physicsSimulation,numAgents , numSimulationFrames,damping*dt/numSimulationFrames,agentsMaxSpeedList,mujocoVisualize,reshapeAction) maxRunningSteps = 10 # sampleTrajectory = SampleTrajectory(maxRunningSteps, transit, isTerminal, rewardFunc, reset) # observeOneAgent = lambda agentID: Observe(agentID, wolvesID, sheepsID, blocksID, getPosFromAgentState, getVelFromAgentState) # observe = lambda state: [observeOneAgent(agentID)(state) for agentID in range(numAgents)] # initObsForParams = observe(reset()) # obsShape = [initObsForParams[obsID].shape for obsID in range(len(initObsForParams))] class ImpulsePolicy(object): """docstring for c""" def __init__(self, initAction): self.initAction = initAction def __call__(self, state, timeStep): action = [[0, 0], [0, 0]] if timeStep == 0: action = self.initAction return action worldDim = 2 trajList = [] startTime = time.time() for i in range(evalNum): np.random.seed(randomSeed + i) initSpeedDirection = np.random.uniform(-np.pi / 2, np.pi / 2, 1)[0] initSpeed = np.random.uniform(0, 1, 1)[0] initActionDirection = np.random.uniform(-np.pi / 2, np.pi / 2, 1)[0] initForce = np.random.uniform(0, 5, 1)[0] # print(initSpeedDirection,initSpeed,initActionDirection,initForce) fixReset = ResetFixWithoutXPos(physicsSimulation, qPosInit, qVelInit, numAgents, numBlocks) blocksState = [[0, 0, 0, 0]] #posX posY velX velY reset = lambda: fixReset([-0.28, 0, 8, 8], [ initSpeed * np.cos(initSpeedDirection), initSpeed * np.sin( initSpeedDirection), 0, 0 ], blocksState) transit = TransitionFunctionWithoutXPos( physicsSimulation, numAgents, numSimulationFrames, damping * dt * numSimulationFrames, agentsMaxSpeedList, mujocoVisualize, isTerminal, reshapeAction) initAction = [[ initForce * np.cos(initActionDirection), initForce * np.sin(initActionDirection) ], [0, 0]] impulsePolicy = ImpulsePolicy(initAction) sampleTrajectory = SampleTrajectory(maxRunningSteps, transit, isTerminal, rewardFunc, reset) traj = sampleTrajectory(impulsePolicy) # print('traj',traj[0]) trajList.append(traj) # saveTraj # print(trajList) saveTraj = True if saveTraj: # trajSavePath = os.path.join(dirName,'traj', 'evaluateCollision', 'CollisionMoveTransitDamplingCylinder.pickle') trajectorySaveExtension = '.pickle' fixedParameters = { 'isMujoco': 1, 'isCylinder': 1, 'randomSeed': randomSeed, 'evalNum': evalNum } trajectoriesSaveDirectory = trajSavePath = os.path.join( dirName, '..', 'trajectory', 'variousCollsiondt={}'.format(dt)) generateTrajectorySavePath = GetSavePath(trajectoriesSaveDirectory, trajectorySaveExtension, fixedParameters) trajectorySavePath = generateTrajectorySavePath(parameterDict) saveToPickle(trajList, trajectorySavePath) # visualize if demoVisualize: entitiesColorList = [wolfColor] * numWolves + [ sheepColor ] * numSheeps + [blockColor] * numBlocks render = Render(entitiesSizeList, entitiesColorList, numAgents, getPosFromAgentState) trajToRender = np.concatenate(trajList) render(trajToRender) endTime = time.time() print("Time taken {} seconds to generate {} trajectories".format( (endTime - startTime), evalNum))
def simuliateOneParameter(parameterDict): wolfSize = 0.075 sheepSize = 0.05 blockSize = 0.2 wolfColor = np.array([0.85, 0.35, 0.35]) sheepColor = np.array([0.35, 0.85, 0.35]) blockColor = np.array([0.25, 0.25, 0.25]) wolvesID = [0,1] sheepsID = [2] blocksID = [3] numWolves = len(wolvesID) numSheeps = len(sheepsID) numBlocks = len(blocksID) sheepMaxSpeed = 1.3 wolfMaxSpeed =1.0 blockMaxSpeed = None agentsMaxSpeedList = [wolfMaxSpeed]* numWolves + [sheepMaxSpeed] * numSheeps numAgents = numWolves + numSheeps numEntities = numAgents + numBlocks entitiesSizeList = [wolfSize]* numWolves + [sheepSize] * numSheeps + [blockSize]* numBlocks entityMaxSpeedList = [wolfMaxSpeed]* numWolves + [sheepMaxSpeed] * numSheeps + [blockMaxSpeed]* numBlocks entitiesMovableList = [True]* numAgents + [False] * numBlocks massList = [1.0] * numEntities isCollision = IsCollision(getPosFromAgentState) rewardWolf = RewardWolf(wolvesID, sheepsID, entitiesSizeList, isCollision) punishForOutOfBound = PunishForOutOfBound() rewardSheep = RewardSheep(wolvesID, sheepsID, entitiesSizeList, getPosFromAgentState, isCollision, punishForOutOfBound) rewardFunc = lambda state, action, nextState: \ list(rewardWolf(state, action, nextState)) + list(rewardSheep(state, action, nextState)) makePropertyList=MakePropertyList(transferNumberListToStr) #changeCollisionReleventParameter dmin=parameterDict['dmin'] dmax=parameterDict['dmax'] width=parameterDict['width'] midpoint=parameterDict['midpoint'] power=parameterDict['power'] timeconst=parameterDict['timeconst'] dampratio=parameterDict['dampratio'] geomIds=[1,2] keyNameList=['@solimp','@solref'] valueList=[[[dmin,dmax,width,midpoint,power],[timeconst,dampratio]]]*len(geomIds) collisionParameter=makePropertyList(geomIds,keyNameList,valueList) #changeSize # geomIds=[1,2] # keyNameList=['@size'] # valueList=[[[0.075,0.075]],[[0.1,0.1]]] # sizeParameter=makePropertyList(geomIds,keyNameList,valueList) #load env xml and change some geoms' property # physicsDynamicsPath=os.path.join(dirName,'multiAgentcollision.xml') physicsDynamicsPath=os.path.join(dirName,'..','..','environment','mujocoEnv','multiAgentcollision.xml') with open(physicsDynamicsPath) as f: xml_string = f.read() envXmlDict = xmltodict.parse(xml_string.strip()) print(envXmlDict) envXmlPropertyDictList=[collisionParameter] changeEnvXmlPropertFuntionyList=[changeGeomProperty] for propertyDict,changeXmlProperty in zip(envXmlPropertyDictList,changeEnvXmlPropertFuntionyList): envXmlDict=changeXmlProperty(envXmlDict,propertyDict) envXml=xmltodict.unparse(envXmlDict) physicsModel = mujoco.load_model_from_xml(envXml) physicsSimulation = mujoco.MjSim(physicsModel) # MDP function qPosInit = [0, 0]*numAgents qVelInit = [0, 0]*numAgents qVelInitNoise = 0 qPosInitNoise = 1 # reset=ResetUniformWithoutXPos(physicsSimulation, qPosInit, qVelInit, numAgents, numBlocks,qPosInitNoise, qVelInitNoise) fixReset=ResetFixWithoutXPos(physicsSimulation, qPosInit, qVelInit, numAgents,numBlocks) blocksState=[[0,0,0,0]] reset=lambda :fixReset([-0.5,0.8,-0.5,0,0.5,0.8],[0,0,0,0,0,0],blocksState) isTerminal = lambda state: False numSimulationFrames = 1 visualize=False # physicsViewer=None dt=0.1 damping=2.5 transit = TransitionFunctionWithoutXPos(physicsSimulation,numAgents , numSimulationFrames,damping*dt/numSimulationFrames,agentsMaxSpeedList,visualize,isTerminal) maxRunningSteps = 100 sampleTrajectory = SampleTrajectory(maxRunningSteps, transit, isTerminal, rewardFunc, reset) observeOneAgent = lambda agentID: Observe(agentID, wolvesID, sheepsID, blocksID, getPosFromAgentState, getVelFromAgentState) observe = lambda state: [observeOneAgent(agentID)(state) for agentID in range(numAgents)] initObsForParams = observe(reset()) obsShape = [initObsForParams[obsID].shape for obsID in range(len(initObsForParams))] worldDim = 2 evalNum=1 trajectorySaveExtension = '.pickle' fixedParameters = {'isMujoco': 1,'isCylinder':1,'evalNum':evalNum} trajectoriesSaveDirectory=trajSavePath = os.path.join(dirName,'..','trajectory') generateTrajectorySavePath = GetSavePath(trajectoriesSaveDirectory, trajectorySaveExtension, fixedParameters) trajectorySavePath = generateTrajectorySavePath(parameterDict) if not os.path.isfile(trajectorySavePath): trajList =list() for i in range(evalNum): # policy =lambda state: [[-3,0] for agent in range(numAgents)] np.random.seed(i) # policy =lambda state: [np.random.uniform(-5,5,2) for agent in range(numAgents)]sss # policy =lambda state: [[0,1] for agent in range(numAgents)] policy =lambda state: [[1,0] ] # policy =lambda state: [[np.random.uniform(0,1,1),0] ,[np.random.uniform(-1,0,1),0] ] traj = sampleTrajectory(policy) # print(i,'traj',[state[1] for state in traj[:2]]) # print(traj) trajList.append( traj) # saveTraj saveTraj = True if saveTraj: # trajSavePath = os.path.join(dirName,'traj', 'evaluateCollision', 'CollisionMoveTransitDamplingCylinder.pickle') saveToPickle(trajList, trajectorySavePath) # visualize # physicsViewer.render() visualize = True if visualize: entitiesColorList = [wolfColor] * numWolves + [sheepColor] * numSheeps + [blockColor] * numBlocks render = Render(entitiesSizeList, entitiesColorList, numAgents, getPosFromAgentState) render(trajList)
def generateSingleCondition(condition): debug = 0 if debug: damping=2.0 frictionloss=0.0 masterForce=1.0 numWolves = 1 numSheeps = 1 numMasters = 1 maxTimeStep = 25 saveTraj=False saveImage=True visualizeMujoco=False visualizeTraj = True makeVideo=True else: # print(sys.argv) # condition = json.loads(sys.argv[1]) damping = float(condition['damping']) frictionloss = float(condition['frictionloss']) masterForce = float(condition['masterForce']) numWolves = 1 numSheeps = 1 numMasters = 1 maxTimeStep = 25 saveTraj=False saveImage=True visualizeMujoco=False visualizeTraj = True makeVideo=False print("maddpg: , saveTraj: {}, visualize: {},damping; {},frictionloss: {}".format( str(saveTraj), str(visualizeMujoco),damping,frictionloss)) numAgents = numWolves + numSheeps+numMasters numEntities = numAgents + numMasters wolvesID = [0] sheepsID = [1] masterID = [2] wolfSize = 0.075 sheepSize = 0.05 masterSize = 0.075 entitiesSizeList = [wolfSize] * numWolves + [sheepSize] * numSheeps + [masterSize] * numMasters wolfMaxSpeed = 1.0 blockMaxSpeed = None entitiesMovableList = [True] * numAgents + [False] * numMasters massList = [1.0] * numEntities isCollision = IsCollision(getPosFromAgentState) punishForOutOfBound = PunishForOutOfBound() rewardSheep = RewardSheep(wolvesID, sheepsID, entitiesSizeList, getPosFromAgentState, isCollision,punishForOutOfBound) rewardWolf = RewardWolf(wolvesID, sheepsID, entitiesSizeList, isCollision) rewardMaster= lambda state, action, nextState: [-reward for reward in rewardWolf(state, action, nextState)] rewardFunc = lambda state, action, nextState: \ list(rewardWolf(state, action, nextState)) + list(rewardSheep(state, action, nextState))+list(rewardMaster(state, action, nextState)) dirName = os.path.dirname(__file__) # physicsDynamicsPath=os.path.join(dirName,'..','..','environment','mujocoEnv','rope','leased.xml') makePropertyList=MakePropertyList(transferNumberListToStr) geomIds=[1,2,3] keyNameList=[0,1] valueList=[[damping,damping]]*len(geomIds) dampngParameter=makePropertyList(geomIds,keyNameList,valueList) changeJointDampingProperty=lambda envDict,geomPropertyDict:changeJointProperty(envDict,geomPropertyDict,'@damping') geomIds=[1,2,3] keyNameList=[0,1] valueList=[[frictionloss,frictionloss]]*len(geomIds) frictionlossParameter=makePropertyList(geomIds,keyNameList,valueList) changeJointFrictionlossProperty=lambda envDict,geomPropertyDict:changeJointProperty(envDict,geomPropertyDict,'@frictionloss') physicsDynamicsPath=os.path.join(dirName,'..','..','environment','mujocoEnv','rope','leasedNew.xml') # physicsDynamicsPath=os.path.join(dirName,'..','..','environment','mujocoEnv','rope','leased.xml') with open(physicsDynamicsPath) as f: xml_string = f.read() envXmlDict = xmltodict.parse(xml_string.strip()) envXmlDict = xmltodict.parse(xml_string.strip()) envXmlPropertyDictList=[dampngParameter,frictionlossParameter] changeEnvXmlPropertFuntionyList=[changeJointDampingProperty,changeJointFrictionlossProperty] for propertyDict,changeXmlProperty in zip(envXmlPropertyDictList,changeEnvXmlPropertFuntionyList): envXmlDict=changeXmlProperty(envXmlDict,propertyDict) envXml=xmltodict.unparse(envXmlDict) physicsModel = mujoco.load_model_from_xml(envXml) physicsSimulation = mujoco.MjSim(physicsModel) # print(physicsSimulation.model.body_pos) # print(dir(physicsSimulation.model)) # print(dir(physicsSimulation.data),physicsSimulation.dataphysicsSimulation.data) # print(physicsSimulation.data.qpos,dir(physicsSimulation.data.qpos)) # print(physicsSimulation.data.qpos,dir(physicsSimulation.data.qpos)) qPosInit = (0, ) * 24 qVelInit = (0, ) * 24 qPosInitNoise = 0.4 qVelInitNoise = 0 numAgent = 2 tiedAgentId = [0, 2] ropePartIndex = list(range(3, 12)) maxRopePartLength = 0.06 reset = ResetUniformWithoutXPosForLeashed(physicsSimulation, qPosInit, qVelInit, numAgent, tiedAgentId,ropePartIndex, maxRopePartLength, qPosInitNoise, qVelInitNoise) numSimulationFrames=10 isTerminal= lambda state: False reshapeActionList = [ReshapeAction(5),ReshapeAction(5),ReshapeAction(masterForce)] transit=TransitionFunctionWithoutXPos(physicsSimulation, numSimulationFrames, visualizeMujoco,isTerminal, reshapeActionList) # damping=2.5 # numSimulationFrames =int(0.1/dt) # agentsMaxSpeedList = [wolfMaxSpeed]* numWolves + [sheepMaxSpeed] * numSheeps # reshapeAction = ReshapeAction() # isTerminal = lambda state: False # transit = TransitionFunctionWithoutXPos(physicsSimulation,numAgents , numSimulationFrames,damping*dt*numSimulationFrames,agentsMaxSpeedList,visualizeMujoco,isTerminal,reshapeAction) maxRunningStepsToSample = 100 sampleTrajectory = SampleTrajectory(maxRunningStepsToSample, transit, isTerminal, rewardFunc, reset) observeOneAgent = lambda agentID: Observe(agentID, wolvesID, sheepsID, masterID, getPosFromAgentState, getVelFromAgentState) observe = lambda state: [observeOneAgent(agentID)(state) for agentID in range(numAgents)] initObsForParams = observe(reset()) obsShape = [initObsForParams[obsID].shape[0] for obsID in range(len(initObsForParams))] worldDim = 2 actionDim = worldDim * 2 + 1 layerWidth = [128, 128] # ------------ model ------------------------ buildMADDPGModels = BuildMADDPGModels(actionDim, numAgents, obsShape) modelsList = [buildMADDPGModels(layerWidth, agentID) for agentID in range(numAgents)] # individStr = 'individ' if individualRewardWolf else 'shared' # fileName = "maddpg{}wolves{}sheep{}blocks{}episodes{}stepSheepSpeed{}{}_agent".format( # numWolves, numSheeps, numMasters, maxEpisode, maxTimeStep, sheepSpeedMultiplier, individStr) # wolvesModelPaths = [os.path.join(dirName, '..', 'trainedModels', '3wolvesMaddpg', fileName + str(i) + '60000eps') for i in wolvesID] # [restoreVariables(model, path) for model, path in zip(wolvesModel, wolvesModelPaths)] # # actOneStepOneModel = ActOneStep(actByPolicyTrainNoisy) # policy = lambda allAgentsStates: [actOneStepOneModel(model, observe(allAgentsStates)) for model in modelsList] # modelPaths = [os.path.join(dirName, '..', 'trainedModels', '3wolvesMaddpg_ExpEpsLengthAndSheepSpeed', fileName + str(i)) for i in # range(numAgents)] # modelFolder = os.path.join(dirName, '..', 'trainedModels', 'mujocoMADDPG') # modelFolder = os.path.join(dirName, '..', 'trainedModels', 'mujocoMADDPG','timeconst='+str(timeconst)+'dampratio='+str(dampratio)) modelFolder = os.path.join(dirName, '..', 'trainedModels', 'mujocoMADDPGLeasedFixedEnv2','damping={}_frictionloss={}_masterForce={}'.format(damping,frictionloss,masterForce)) fileName = "maddpg{}episodes{}step_agent".format(maxEpisode, maxTimeStep) modelPaths = [os.path.join(modelFolder, fileName + str(i) + '60000eps') for i in range(numAgents)] [restoreVariables(model, path) for model, path in zip(modelsList, modelPaths)] actOneStepOneModel = ActOneStep(actByPolicyTrainNoisy) policy = lambda allAgentsStates: [actOneStepOneModel(model, observe(allAgentsStates)) for model in modelsList] trajList = [] numTrajToSample = 5 for i in range(numTrajToSample): np.random.seed(i) traj = sampleTrajectory(policy) trajList.append(list(traj)) # saveTraj if saveTraj: trajFileName = "maddpg{}wolves{}sheep{}blocks{}eps{}stepSheepSpeed{}{}Traj".format(numWolves, numSheeps, numMasters, maxEpisode, maxTimeStep, sheepSpeedMultiplier, individStr) trajSavePath = os.path.join(dirName, '..', 'trajectory', trajFileName) saveToPickle(trajList, trajSavePath) # visualize if visualizeTraj: demoFolder = os.path.join(dirName, '..', 'demos', 'mujocoMADDPGLeasedFixedEnv2','damping={}_frictionloss={}_masterForce={}'.format(damping,frictionloss,masterForce)) if not os.path.exists(demoFolder): os.makedirs(demoFolder) entitiesColorList = [wolfColor] * numWolves + [sheepColor] * numSheeps + [masterColor] * numMasters render = Render(entitiesSizeList, entitiesColorList, numAgents,demoFolder,saveImage, getPosFromAgentState) # print(trajList[0][0],'!!!3',trajList[0][1]) trajToRender = np.concatenate(trajList) render(trajToRender)
def simuliateOneParameter(parameterDict): wolfSize = 0.075 sheepSize = 0.05 blockSize = 0.2 wolfColor = np.array([0.85, 0.35, 0.35]) sheepColor = np.array([0.35, 0.85, 0.35]) blockColor = np.array([0.25, 0.25, 0.25]) wolvesID = [0,1] sheepsID = [2] blocksID = [3] numWolves = len(wolvesID) numSheeps = len(sheepsID) numBlocks = len(blocksID) sheepMaxSpeed = 1.3 wolfMaxSpeed =1.0 blockMaxSpeed = None agentsMaxSpeedList = [wolfMaxSpeed]* numWolves + [sheepMaxSpeed] * numSheeps numAgents = numWolves + numSheeps numEntities = numAgents + numBlocks entitiesSizeList = [wolfSize]* numWolves + [sheepSize] * numSheeps + [blockSize]* numBlocks entityMaxSpeedList = [wolfMaxSpeed]* numWolves + [sheepMaxSpeed] * numSheeps + [blockMaxSpeed]* numBlocks entitiesMovableList = [True]* numAgents + [False] * numBlocks massList = [1.0] * numEntities isCollision = IsCollision(getPosFromAgentState) rewardWolf = RewardWolf(wolvesID, sheepsID, entitiesSizeList, isCollision) punishForOutOfBound = PunishForOutOfBound() rewardSheep = RewardSheep(wolvesID, sheepsID, entitiesSizeList, getPosFromAgentState, isCollision, punishForOutOfBound) rewardFunc = lambda state, action, nextState: \ list(rewardWolf(state, action, nextState)) + list(rewardSheep(state, action, nextState)) makePropertyList=MakePropertyList(transferNumberListToStr) #changeCollisionReleventParameter dmin=parameterDict['dmin'] dmax=parameterDict['dmax'] width=parameterDict['width'] midpoint=parameterDict['midpoint'] power=parameterDict['power'] timeconst=parameterDict['timeconst'] dampratio=parameterDict['dampratio'] geomIds=[1,2,3,4] keyNameList=['@solimp','@solref'] valueList=[[[dmin,dmax,width,midpoint,power],[timeconst,dampratio]]]*len(geomIds) collisionParameter=makePropertyList(geomIds,keyNameList,valueList) #changeSize # geomIds=[1,2] # keyNameList=['@size'] # valueList=[[[0.075,0.075]],[[0.1,0.1]]] # sizeParameter=makePropertyList(geomIds,keyNameList,valueList) #load env xml and change some geoms' property physicsDynamicsPath=os.path.join(dirName,'..','..','environment','mujocoEnv','rope','1leased.xml') with open(physicsDynamicsPath) as f: xml_string = f.read() envXmlDict = xmltodict.parse(xml_string.strip()) # envXmlPropertyDictList=[collisionParameter] # changeEnvXmlPropertFuntionyList=[changeGeomProperty] # for propertyDict,changeXmlProperty in zip(envXmlPropertyDictList,changeEnvXmlPropertFuntionyList): # envXmlDict=changeXmlProperty(envXmlDict,propertyDict) envXml=xmltodict.unparse(envXmlDict) # print(envXmlDict['mujoco']['worldbody']['body'][0]) physicsModel = mujoco.load_model_from_xml(envXml) physicsSimulation = mujoco.MjSim(physicsModel) # MDP function qPosInit = [0, 0]*numAgents qVelInit = [0, 0]*numAgents qVelInitNoise = 0 qPosInitNoise = 1 # reset=ResetUniformWithoutXPos(physicsSimulation, qPosInit, qVelInit, numAgents, numBlocks,qPosInitNoise, qVelInitNoise) fixReset=ResetFixWithoutXPos(physicsSimulation, qPosInit, qVelInit, numAgents,numBlocks) blocksState=[[0,-0.8,0,0]] reset=lambda :fixReset([-0.5,0.8,-0.5,0,0.5,0.8],[0,0,0,0,0,0],blocksState) isTerminal = lambda state: False numSimulationFrames = 10 visualize=True # physicsViewer=None dt=0.01 damping=2.5 reshapeAction=lambda action:action physicsViewer = mujoco.MjViewer(physicsSimulation) qPosInit = (0, ) * 24 qVelInit = (0, ) * 24 qPosInitNoise = 6 qVelInitNoise = 4 numAgent = 3 tiedAgentId = [1, 2] ropePartIndex = list(range(3, 12)) maxRopePartLength = 0.6 reset = ResetUniformForLeashed(physicsSimulation, qPosInit, qVelInit, numAgent, tiedAgentId, \ ropePartIndex, maxRopePartLength, qPosInitNoise, qVelInitNoise) reset() for i in range(6000): physicsViewer.render()
def main(): debug = 0 if debug: numWolves = 3 numSheeps = 1 numBlocks = 2 saveAllmodels = False maxTimeStep = 25 sheepSpeedMultiplier = 1 sampleMethod = '5' learningRateSheepCritic = 0.005 learningRateSheepActor = 0.005 else: print(sys.argv) condition = json.loads(sys.argv[1]) numWolves = 3 numSheeps = 1 numBlocks = 2 saveAllmodels = False maxTimeStep = 25 sheepSpeedMultiplier = 1 sampleMethod = condition['sampleMethod'] learningRateSheepCritic = condition['sheepLr'] learningRateSheepActor = condition['sheepLr'] print( "maddpg: {} wolves, {} sheep, {} blocks, {} episodes with {} steps each eps, sheepSpeed: {}x, sampleMethod: {}" .format(numWolves, numSheeps, numBlocks, maxEpisode, maxTimeStep, sheepSpeedMultiplier, str(sampleMethod))) numAgents = numWolves + numSheeps numEntities = numAgents + numBlocks wolvesID = list(range(numWolves)) sheepsID = list(range(numWolves, numAgents)) blocksID = list(range(numAgents, numEntities)) wolfSize = 0.075 sheepSize = 0.05 blockSize = 0.2 entitiesSizeList = [wolfSize] * numWolves + [sheepSize] * numSheeps + [ blockSize ] * numBlocks wolfMaxSpeed = 1.0 blockMaxSpeed = None sheepMaxSpeedOriginal = 1.3 sheepMaxSpeed = sheepMaxSpeedOriginal * sheepSpeedMultiplier entityMaxSpeedList = [wolfMaxSpeed] * numWolves + [ sheepMaxSpeed ] * numSheeps + [blockMaxSpeed] * numBlocks entitiesMovableList = [True] * numAgents + [False] * numBlocks massList = [1.0] * numEntities isCollision = IsCollision(getPosFromAgentState) punishForOutOfBound = PunishForOutOfBound() rewardSheep = RewardSheep(wolvesID, sheepsID, entitiesSizeList, getPosFromAgentState, isCollision, punishForOutOfBound) rewardWolfIndivid = RewardWolfIndividual(wolvesID, sheepsID, entitiesSizeList, isCollision) rewardWolfShared = RewardWolf(wolvesID, sheepsID, entitiesSizeList, isCollision) rewardFuncIndividWolf = lambda state, action, nextState: \ list(rewardWolfIndivid(state, action, nextState)) + list(rewardSheep(state, action, nextState)) rewardFuncSharedWolf = lambda state, action, nextState: \ list(rewardWolfShared(state, action, nextState)) + list(rewardSheep(state, action, nextState)) reset = ResetMultiAgentChasing(numAgents, numBlocks) observeOneAgent = lambda agentID: Observe(agentID, wolvesID, sheepsID, blocksID, getPosFromAgentState, getVelFromAgentState) observe = lambda state: [ observeOneAgent(agentID)(state) for agentID in range(numAgents) ] reshapeAction = ReshapeAction() getCollisionForce = GetCollisionForce() applyActionForce = ApplyActionForce(wolvesID, sheepsID, entitiesMovableList) applyEnvironForce = ApplyEnvironForce(numEntities, entitiesMovableList, entitiesSizeList, getCollisionForce, getPosFromAgentState) integrateState = IntegrateState(numEntities, entitiesMovableList, massList, entityMaxSpeedList, getVelFromAgentState, getPosFromAgentState) transit = TransitMultiAgentChasing(numEntities, reshapeAction, applyActionForce, applyEnvironForce, integrateState) isTerminal = lambda state: [False] * numAgents initObsForParams = observe(reset()) obsShape = [ initObsForParams[obsID].shape[0] for obsID in range(len(initObsForParams)) ] worldDim = 2 actionDim = worldDim * 2 + 1 layerWidth = [128, 128] #------------ models ------------------------ buildMADDPGModels = BuildMADDPGModels(actionDim, numAgents, obsShape) modelsListShared = [ buildMADDPGModels(layerWidth, agentID) for agentID in range(numAgents) ] sheepModel = [modelsListShared[sheepID] for sheepID in sheepsID] modelsListIndivid = [ buildMADDPGModels(layerWidth, agentID) for agentID in wolvesID ] + sheepModel trainCriticBySASRWolf = TrainCriticBySASR( actByPolicyTargetNoisyForNextState, learningRateWolfCritic, gamma) trainCriticWolf = TrainCritic(trainCriticBySASRWolf) trainCriticBySASRSheep = TrainCriticBySASR( actByPolicyTargetNoisyForNextState, learningRateSheepCritic, gamma) trainCriticSheep = TrainCritic(trainCriticBySASRSheep) trainActorFromSAWolf = TrainActorFromSA(learningRateWolfActor) trainActorWolf = TrainActor(trainActorFromSAWolf) trainActorFromSASheep = TrainActorFromSA(learningRateSheepActor) trainActorSheep = TrainActor(trainActorFromSASheep) trainActorList = [trainActorWolf] * numWolves + [trainActorSheep ] * numSheeps trainCriticList = [trainCriticWolf] * numWolves + [trainCriticSheep ] * numSheeps paramUpdateInterval = 1 # updateParameters = UpdateParameters(paramUpdateInterval, tau) sampleBatchFromMemory = SampleFromMemory(minibatchSize) learnInterval = 100 learningStartBufferSize = minibatchSize * maxTimeStep startLearn = StartLearn(learningStartBufferSize, learnInterval) trainMADDPGModelsIndivid = TrainMADDPGModelsWithIterSheep( updateParameters, trainActorList, trainCriticList, sampleBatchFromMemory, startLearn, modelsListIndivid) trainMADDPGModelsShared = TrainMADDPGModelsWithIterSheep( updateParameters, trainActorList, trainCriticList, sampleBatchFromMemory, startLearn, modelsListShared) actOneStepOneModel = ActOneStep(actByPolicyTrainNoisy) actOneStepIndivid = lambda allAgentsStates, runTime: [ actOneStepOneModel(model, allAgentsStates) for model in modelsListIndivid ] actOneStepShared = lambda allAgentsStates, runTime: [ actOneStepOneModel(model, allAgentsStates) for model in modelsListShared ] sampleOneStepIndivid = SampleOneStep(transit, rewardFuncIndividWolf) sampleOneStepShared = SampleOneStep(transit, rewardFuncSharedWolf) runDDPGTimeStepIndivid = RunTimeStep(actOneStepIndivid, sampleOneStepIndivid, trainMADDPGModelsIndivid, observe=observe) runDDPGTimeStepShared = RunTimeStep(actOneStepShared, sampleOneStepShared, trainMADDPGModelsShared, observe=observe) runEpisodeIndivid = RunEpisode(reset, runDDPGTimeStepIndivid, maxTimeStep, isTerminal) runEpisodeShared = RunEpisode(reset, runDDPGTimeStepShared, maxTimeStep, isTerminal) getAgentModelIndivid = lambda agentId: lambda: trainMADDPGModelsIndivid.getTrainedModels( )[agentId] getModelListIndivid = [getAgentModelIndivid(i) for i in range(numAgents)] modelSaveRate = 1000 individStr = 'individ' fileName = "maddpg{}wolves{}sheep{}blocks{}episodes{}stepSheepSpeed{}Lr{}SampleMethod{}{}_agent".format( numWolves, numSheeps, numBlocks, maxEpisode, maxTimeStep, sheepSpeedMultiplier, learningRateSheepActor, sampleMethod, individStr) modelPath = os.path.join(dirName, '..', 'trainedModels', 'IterTrainSheep_evalSheeplrAndSampleMethod', fileName) saveModelsIndivid = [ SaveModel(modelSaveRate, saveVariables, getTrainedModel, modelPath + str(i), saveAllmodels) for i, getTrainedModel in enumerate(getModelListIndivid) ] getAgentModelShared = lambda agentId: lambda: trainMADDPGModelsShared.getTrainedModels( )[agentId] getModelListShared = [getAgentModelShared(i) for i in range(numAgents)] individStr = 'shared' fileName = "maddpg{}wolves{}sheep{}blocks{}episodes{}stepSheepSpeed{}Lr{}SampleMethod{}{}_agent".format( numWolves, numSheeps, numBlocks, maxEpisode, maxTimeStep, sheepSpeedMultiplier, learningRateSheepActor, sampleMethod, individStr) modelPath = os.path.join(dirName, '..', 'trainedModels', 'IterTrainSheep_evalSheeplrAndSampleMethod', fileName) saveModelsShared = [ SaveModel(modelSaveRate, saveVariables, getTrainedModel, modelPath + str(i), saveAllmodels) for i, getTrainedModel in enumerate(getModelListShared) ] maddpgIterSheep = RunAlgorithmWithIterSheep(runEpisodeIndivid, runEpisodeShared, maxEpisode, saveModelsIndivid, saveModelsShared, sampleMethod, numAgents) replayBufferIndivid = getBuffer(bufferSize) replayBufferShared = getBuffer(bufferSize) meanRewardList, trajectory = maddpgIterSheep(replayBufferShared, replayBufferIndivid)
def main(): debug = 1 if debug: numWolves = 2 numSheeps = 1 numBlocks = 1 saveAllmodels = True maxTimeStep = 25 sheepSpeedMultiplier = 1 individualRewardWolf = int(False) else: print(sys.argv) condition = json.loads(sys.argv[1]) numWolves = int(condition['numWolves']) numSheeps = int(condition['numSheeps']) numBlocks = int(condition['numBlocks']) maxTimeStep = int(condition['maxTimeStep']) sheepSpeedMultiplier = float(condition['sheepSpeedMultiplier']) individualRewardWolf = int(condition['individualRewardWolf']) saveAllmodels = False print("maddpg: {} wolves, {} sheep, {} blocks, {} episodes with {} steps each eps, sheepSpeed: {}x, wolfIndividualReward: {}, save all models: {}". format(numWolves, numSheeps, numBlocks, maxEpisode, maxTimeStep, sheepSpeedMultiplier, individualRewardWolf, str(saveAllmodels))) numAgents = numWolves + numSheeps numEntities = numAgents + numBlocks wolvesID = list(range(numWolves)) sheepsID = list(range(numWolves, numAgents)) blocksID = list(range(numAgents, numEntities)) wolfSize = 0.075 sheepSize = 0.05 blockSize = 0.2 entitiesSizeList = [wolfSize] * numWolves + [sheepSize] * numSheeps + [blockSize] * numBlocks wolfMaxSpeed = 1.0 blockMaxSpeed = None sheepMaxSpeedOriginal = 1.3 sheepMaxSpeed = sheepMaxSpeedOriginal * sheepSpeedMultiplier entityMaxSpeedList = [wolfMaxSpeed] * numWolves + [sheepMaxSpeed] * numSheeps + [blockMaxSpeed] * numBlocks entitiesMovableList = [True] * numAgents + [False] * numBlocks massList = [1.0] * numEntities isCollision = IsCollision(getPosFromAgentState) punishForOutOfBound = PunishForOutOfBound() rewardSheep = RewardSheep(wolvesID, sheepsID, entitiesSizeList, getPosFromAgentState, isCollision, punishForOutOfBound) if individualRewardWolf: rewardWolf = RewardWolfIndividual(wolvesID, sheepsID, entitiesSizeList, isCollision) else: rewardWolf = RewardWolf(wolvesID, sheepsID, entitiesSizeList, isCollision) rewardFunc = lambda state, action, nextState: \ list(rewardWolf(state, action, nextState)) + list(rewardSheep(state, action, nextState)) reset = ResetMultiAgentChasing(numAgents, numBlocks) observeOneAgent = lambda agentID: Observe(agentID, wolvesID, sheepsID, blocksID, getPosFromAgentState, getVelFromAgentState) observe = lambda state: [observeOneAgent(agentID)(state) for agentID in range(numAgents)] reshapeAction = ReshapeAction() getCollisionForce = GetCollisionForce() applyActionForce = ApplyActionForce(wolvesID, sheepsID, entitiesMovableList) applyEnvironForce = ApplyEnvironForce(numEntities, entitiesMovableList, entitiesSizeList,getCollisionForce, getPosFromAgentState) integrateState = IntegrateState(numEntities, entitiesMovableList, massList,entityMaxSpeedList, getVelFromAgentState, getPosFromAgentState) transit = TransitMultiAgentChasing(numEntities, reshapeAction, applyActionForce, applyEnvironForce, integrateState) isTerminal = lambda state: [False]* numAgents initObsForParams = observe(reset()) obsShape = [initObsForParams[obsID].shape[0] for obsID in range(len(initObsForParams))] worldDim = 2 actionDim = worldDim * 2 + 1 layerWidth = [128, 128] #------------ models ------------------------ buildMADDPGModels = BuildMADDPGModels(actionDim, numAgents, obsShape) modelsList = [buildMADDPGModels(layerWidth, agentID) for agentID in range(numAgents)] trainCriticBySASR = TrainCriticBySASR(actByPolicyTargetNoisyForNextState, learningRateCritic, gamma) trainCritic = TrainCritic(trainCriticBySASR) trainActorFromSA = TrainActorFromSA(learningRateActor) trainActor = TrainActor(trainActorFromSA) paramUpdateInterval = 1 # updateParameters = UpdateParameters(paramUpdateInterval, tau) sampleBatchFromMemory = SampleFromMemory(minibatchSize) learnInterval = 100 learningStartBufferSize = minibatchSize * maxTimeStep startLearn = StartLearn(learningStartBufferSize, learnInterval) trainMADDPGModels = TrainMADDPGModelsWithBuffer(updateParameters, trainActor, trainCritic, sampleBatchFromMemory, startLearn, modelsList) actOneStepOneModel = ActOneStep(actByPolicyTrainNoisy) actOneStep = lambda allAgentsStates, runTime: [actOneStepOneModel(model, allAgentsStates) for model in modelsList] sampleOneStep = SampleOneStep(transit, rewardFunc) runDDPGTimeStep = RunTimeStep(actOneStep, sampleOneStep, trainMADDPGModels, observe = observe) runEpisode = RunEpisode(reset, runDDPGTimeStep, maxTimeStep, isTerminal) getAgentModel = lambda agentId: lambda: trainMADDPGModels.getTrainedModels()[agentId] getModelList = [getAgentModel(i) for i in range(numAgents)] modelSaveRate = 1000 individStr = 'individ' if individualRewardWolf else 'shared' fileName = "maddpg{}wolves{}sheep{}blocks{}episodes{}stepSheepSpeed{}{}_agent".format( numWolves, numSheeps, numBlocks, maxEpisode, maxTimeStep, sheepSpeedMultiplier, individStr) modelPath = os.path.join(dirName, '..', 'trainedModels', 'maddpg', fileName) saveModels = [SaveModel(modelSaveRate, saveVariables, getTrainedModel, modelPath+ str(i), saveAllmodels) for i, getTrainedModel in enumerate(getModelList)] maddpg = RunAlgorithm(runEpisode, maxEpisode, saveModels, numAgents) replayBuffer = getBuffer(bufferSize) meanRewardList, trajectory = maddpg(replayBuffer)
def main(): debug = 1 if debug: numWolves = 3 numSheeps = 1 numBlocks = 2 timeconst = 0.5 dampratio = 0.2 saveTraj = False visualizeTraj = True maxTimeStep = 25 sheepSpeedMultiplier = 1.0 individualRewardWolf = 0 hasWalls = 1.5 dt = 0.05 visualizeMujoco = True else: print(sys.argv) condition = json.loads(sys.argv[1]) numWolves = int(condition['numWolves']) numSheeps = int(condition['numSheeps']) numBlocks = int(condition['numBlocks']) saveTraj = True visualizeTraj = False maxTimeStep = 50 sheepSpeedMultiplier = 1.25 individualRewardWolf = 1 print( "maddpg: {} wolves, {} sheep, {} blocks, saveTraj: {}, visualize: {}". format(numWolves, numSheeps, numBlocks, str(saveTraj), str(visualizeTraj))) numAgents = numWolves + numSheeps numEntities = numAgents + numBlocks wolvesID = list(range(numWolves)) sheepsID = list(range(numWolves, numAgents)) blocksID = list(range(numAgents, numEntities)) wolfSize = 0.075 sheepSize = 0.05 blockSize = 0.2 entitiesSizeList = [wolfSize] * numWolves + [sheepSize] * numSheeps + [ blockSize ] * numBlocks wolfMaxSpeed = 1.0 blockMaxSpeed = None sheepMaxSpeedOriginal = 1.3 sheepMaxSpeed = sheepMaxSpeedOriginal * sheepSpeedMultiplier entityMaxSpeedList = [wolfMaxSpeed] * numWolves + [ sheepMaxSpeed ] * numSheeps + [blockMaxSpeed] * numBlocks entitiesMovableList = [True] * numAgents + [False] * numBlocks massList = [1.0] * numEntities isCollision = IsCollision(getPosFromAgentState) punishForOutOfBound = PunishForOutOfBound() rewardSheep = RewardSheep(wolvesID, sheepsID, entitiesSizeList, getPosFromAgentState, isCollision, punishForOutOfBound) if individualRewardWolf: rewardWolf = RewardWolfIndividual(wolvesID, sheepsID, entitiesSizeList, isCollision) else: rewardWolf = RewardWolf(wolvesID, sheepsID, entitiesSizeList, isCollision) rewardFunc = lambda state, action, nextState: list( rewardWolf(state, action, nextState)) + list( rewardSheep(state, action, nextState)) dirName = os.path.dirname(__file__) # physicsDynamicsPath=os.path.join(dirName,'..','..','environment','mujocoEnv','numBlocks=1_numSheeps=1_numWolves=1.xml') if hasWalls: # physicsDynamicsPath=os.path.join(dirName,'..','..','environment','mujocoEnv','hasWalls=1_numBlocks={}_numSheeps={}_numWolves={}timeconst={}dampratio={}.xml'.format(numBlocks,numSheeps,numWolves,timeconst,dampratio)) physicsDynamicsPath = os.path.join( dirName, '..', '..', 'environment', 'mujocoEnv', 'dt={}'.format(dt), 'hasWalls={}_numBlocks={}_numSheeps={}_numWolves={}timeconst={}dampratio={}.xml' .format(hasWalls, numBlocks, numSheeps, numWolves, timeconst, dampratio)) # physicsDynamicsPath=os.path.join(dirName,'..','..','environment','mujocoEnv','crossTest3w1s2b.xml') else: physicsDynamicsPath = os.path.join( dirName, '..', '..', 'environment', 'mujocoEnv', 'numBlocks={}_numSheeps={}_numWolves={}timeconst={}dampratio={}.xml' .format(numBlocks, numSheeps, numWolves, timeconst, dampratio)) with open(physicsDynamicsPath) as f: xml_string = f.read() envXmlDict = xmltodict.parse(xml_string.strip()) envXml = xmltodict.unparse(envXmlDict) physicsModel = mujoco.load_model_from_xml(envXml) physicsSimulation = mujoco.MjSim(physicsModel) print(physicsSimulation.model.body_pos) # print(dir(physicsSimulation.model)) # print(dir(physicsSimulation.data),physicsSimulation.dataphysicsSimulation.data) # print(physicsSimulation.data.qpos,dir(physicsSimulation.data.qpos)) # print(physicsSimulation.data.qpos,dir(physicsSimulation.data.qpos)) qPosInit = [0, 0] * numAgents qVelInit = [0, 0] * numAgents qVelInitNoise = 0 * hasWalls qPosInitNoise = 0.8 * hasWalls getBlockRandomPos = lambda: np.random.uniform(-0.7 * hasWalls, +0.7 * hasWalls, 2) getBlockSpeed = lambda: np.zeros(2) numQPos = len(physicsSimulation.data.qpos) numQVel = len(physicsSimulation.data.qvel) sampleAgentsQPos = lambda: np.asarray(qPosInit) + np.random.uniform( low=-qPosInitNoise, high=qPosInitNoise, size=numQPos) sampleAgentsQVel = lambda: np.asarray(qVelInit) + np.random.uniform( low=-qVelInitNoise, high=qVelInitNoise, size=numQVel) minDistance = 0.2 + 2 * blockSize isOverlap = IsOverlap(minDistance) sampleBlockState = SampleBlockState(numBlocks, getBlockRandomPos, getBlockSpeed, isOverlap) reset = ResetUniformWithoutXPos(physicsSimulation, numAgents, numBlocks, sampleAgentsQPos, sampleAgentsQVel, sampleBlockState) damping = 2.5 numSimulationFrames = int(0.1 / dt) agentsMaxSpeedList = [wolfMaxSpeed] * numWolves + [sheepMaxSpeed ] * numSheeps reshapeAction = ReshapeAction() isTerminal = lambda state: False transit = TransitionFunctionWithoutXPos(physicsSimulation, numAgents, numSimulationFrames, damping * dt * numSimulationFrames, agentsMaxSpeedList, visualizeMujoco, isTerminal, reshapeAction) maxRunningStepsToSample = 100 sampleTrajectory = SampleTrajectory(maxRunningStepsToSample, transit, isTerminal, rewardFunc, reset) observeOneAgent = lambda agentID: Observe(agentID, wolvesID, sheepsID, blocksID, getPosFromAgentState, getVelFromAgentState) observe = lambda state: [ observeOneAgent(agentID)(state) for agentID in range(numAgents) ] initObsForParams = observe(reset()) obsShape = [ initObsForParams[obsID].shape[0] for obsID in range(len(initObsForParams)) ] worldDim = 2 actionDim = worldDim * 2 + 1 layerWidth = [128, 128] # ------------ model ------------------------ buildMADDPGModels = BuildMADDPGModels(actionDim, numAgents, obsShape) modelsList = [ buildMADDPGModels(layerWidth, agentID) for agentID in range(numAgents) ] # individStr = 'individ' if individualRewardWolf else 'shared' # fileName = "maddpg{}wolves{}sheep{}blocks{}episodes{}stepSheepSpeed{}{}_agent".format( # numWolves, numSheeps, numBlocks, maxEpisode, maxTimeStep, sheepSpeedMultiplier, individStr) # wolvesModelPaths = [os.path.join(dirName, '..', 'trainedModels', '3wolvesMaddpg', fileName + str(i) + '60000eps') for i in wolvesID] # [restoreVariables(model, path) for model, path in zip(wolvesModel, wolvesModelPaths)] # # actOneStepOneModel = ActOneStep(actByPolicyTrainNoisy) # policy = lambda allAgentsStates: [actOneStepOneModel(model, observe(allAgentsStates)) for model in modelsList] # modelPaths = [os.path.join(dirName, '..', 'trainedModels', '3wolvesMaddpg_ExpEpsLengthAndSheepSpeed', fileName + str(i)) for i in # range(numAgents)] # modelFolder = os.path.join(dirName, '..', 'trainedModels', 'mujocoMADDPG') # modelFolder = os.path.join(dirName, '..', 'trainedModels', 'mujocoMADDPG','timeconst='+str(timeconst)+'dampratio='+str(dampratio)) if hasWalls: # modelFolder = os.path.join(dirName, '..', 'trainedModels', 'mujocoMADDPG','hasWalls=1'+'numBlocks='+str(numBlocks)+'numSheeps='+str(numSheeps)+'numWolves='+str(numWolves)+'timeconst='+str(timeconst)+'dampratio='+str(dampratio)) # modelFolder = os.path.join(dirName, '..', 'trainedModels', 'mujocoMADDPG','dt={}'.format(dt),'hasWalls='+str(hasWalls)+'numBlocks='+str(numBlocks)+'numSheeps='+str(numSheeps)+'numWolves='+str(numWolves)+'timeconst='+str(timeconst)+'dampratio='+str(dampratio)+'individualRewardWolf='+str(individualRewardWolf)+'sheepSpeedMultiplier='+str(sheepSpeedMultiplier)) # modelFolder = os.path.join(dirName, '..', 'trainedModels', 'mujocoMADDPG','dt={}'.format(dt),'hasWalls='+str(hasWalls)+'numBlocks='+str(numBlocks)+'numSheeps='+str(numSheeps)+'numWolves='+str(numWolves)+'timeconst='+str(timeconst)+'dampratio='+str(dampratio)+'individualRewardWolf='+str(individualRewardWolf)+'sheepSpeedMultiplier='+str(sheepSpeedMultiplier)) modelFolder = os.path.join( dirName, '..', 'trainedModels', 'mujocoMADDPGeavluateWall', 'dt={}'.format(dt), 'hasWalls=' + str(hasWalls) + 'numBlocks=' + str(numBlocks) + 'numSheeps=' + str(numSheeps) + 'numWolves=' + str(numWolves) + 'timeconst=' + str(timeconst) + 'dampratio=' + str(dampratio) + 'individualRewardWolf=' + str(individualRewardWolf) + 'sheepSpeedMultiplier=' + str(sheepSpeedMultiplier)) individStr = 'individ' if individualRewardWolf else 'shared' fileName = "maddpghasWalls={}{}wolves{}sheep{}blocks{}episodes{}stepSheepSpeed{}{}_agent".format( hasWalls, numWolves, numSheeps, numBlocks, maxEpisode, maxTimeStep, sheepSpeedMultiplier, individStr) else: modelFolder = os.path.join( dirName, '..', 'trainedModels', 'mujocoMADDPG', 'numBlocks=' + str(numBlocks) + 'numSheeps=' + str(numSheeps) + 'numWolves=' + str(numWolves) + 'timeconst=' + str(timeconst) + 'dampratio=' + str(dampratio)) fileName = "maddpg{}wolves{}sheep{}blocks60000episodes25stepSheepSpeed1.0shared_agent".format( numWolves, numSheeps, numBlocks) modelPaths = [ os.path.join(modelFolder, fileName + str(i) + '60000eps') for i in range(numAgents) ] [ restoreVariables(model, path) for model, path in zip(modelsList, modelPaths) ] actOneStepOneModel = ActOneStep(actByPolicyTrainNoisy) policy = lambda allAgentsStates: [ actOneStepOneModel(model, observe(allAgentsStates)) for model in modelsList ] trajList = [] numTrajToSample = 50 for i in range(numTrajToSample): np.random.seed(i) traj = sampleTrajectory(policy) trajList.append(list(traj)) # saveTraj if saveTraj: trajFileName = "maddpg{}wolves{}sheep{}blocks{}eps{}stepSheepSpeed{}{}Traj".format( numWolves, numSheeps, numBlocks, maxEpisode, maxTimeStep, sheepSpeedMultiplier, individStr) trajSavePath = os.path.join(dirName, '..', 'trajectory', trajFileName) saveToPickle(trajList, trajSavePath) # visualize if visualizeTraj: entitiesColorList = [wolfColor] * numWolves + [ sheepColor ] * numSheeps + [blockColor] * numBlocks render = Render(entitiesSizeList, entitiesColorList, numAgents, getPosFromAgentState) print(trajList[0][0], '!!!3', trajList[0][1]) trajToRender = np.concatenate(trajList) render(trajToRender)
def main(): debug = 0 if debug: damping = 0.0 frictionloss = 0.4 masterForce = 1.0 numWolves = 1 numSheeps = 1 numMasters = 1 saveAllmodels = True maxTimeStep = 25 visualize = False else: print(sys.argv) condition = json.loads(sys.argv[1]) numWolves = 1 numSheeps = 1 numMasters = 1 damping = float(condition['damping']) frictionloss = float(condition['frictionloss']) masterForce = float(condition['masterForce']) maxTimeStep = 25 visualize = False saveAllmodels = True print( "maddpg: {} wolves, {} sheep, {} blocks, {} episodes with {} steps each eps, save all models: {}" .format(numWolves, numSheeps, numMasters, maxEpisode, maxTimeStep, str(saveAllmodels))) print(damping, frictionloss, masterForce) modelFolder = os.path.join( dirName, '..', 'trainedModels', 'mujocoMADDPGLeasedFixedEnv2', 'damping={}_frictionloss={}_masterForce={}'.format( damping, frictionloss, masterForce)) if not os.path.exists(modelFolder): os.makedirs(modelFolder) numAgents = numWolves + numSheeps + numMasters numEntities = numAgents + numMasters wolvesID = [0] sheepsID = [1] masterID = [2] wolfSize = 0.075 sheepSize = 0.05 blockSize = 0.075 entitiesSizeList = [wolfSize] * numWolves + [sheepSize] * numSheeps + [ blockSize ] * numMasters massList = [1.0] * numEntities isCollision = IsCollision(getPosFromAgentState) punishForOutOfBound = PunishForOutOfBound() rewardSheep = RewardSheep(wolvesID, sheepsID, entitiesSizeList, getPosFromAgentState, isCollision, punishForOutOfBound) rewardWolf = RewardWolf(wolvesID, sheepsID, entitiesSizeList, isCollision) rewardMaster = lambda state, action, nextState: [ -reward for reward in rewardWolf(state, action, nextState) ] rewardFunc = lambda state, action, nextState: \ list(rewardWolf(state, action, nextState)) + list(rewardSheep(state, action, nextState))+list(rewardMaster(state, action, nextState)) makePropertyList = MakePropertyList(transferNumberListToStr) geomIds = [1, 2, 3] keyNameList = [0, 1] valueList = [[damping, damping]] * len(geomIds) dampngParameter = makePropertyList(geomIds, keyNameList, valueList) changeJointDampingProperty = lambda envDict, geomPropertyDict: changeJointProperty( envDict, geomPropertyDict, '@damping') geomIds = [1, 2, 3] keyNameList = [0, 1] valueList = [[frictionloss, frictionloss]] * len(geomIds) frictionlossParameter = makePropertyList(geomIds, keyNameList, valueList) changeJointFrictionlossProperty = lambda envDict, geomPropertyDict: changeJointProperty( envDict, geomPropertyDict, '@frictionloss') physicsDynamicsPath = os.path.join(dirName, '..', '..', 'environment', 'mujocoEnv', 'rope', 'leasedNew.xml') with open(physicsDynamicsPath) as f: xml_string = f.read() envXmlDict = xmltodict.parse(xml_string.strip()) envXmlPropertyDictList = [dampngParameter, frictionlossParameter] changeEnvXmlPropertFuntionyList = [ changeJointDampingProperty, changeJointFrictionlossProperty ] for propertyDict, changeXmlProperty in zip( envXmlPropertyDictList, changeEnvXmlPropertFuntionyList): envXmlDict = changeXmlProperty(envXmlDict, propertyDict) envXml = xmltodict.unparse(envXmlDict) physicsModel = mujoco.load_model_from_xml(envXml) physicsSimulation = mujoco.MjSim(physicsModel) qPosInit = (0, ) * 24 qVelInit = (0, ) * 24 qPosInitNoise = 0.6 qVelInitNoise = 0 numAgent = 3 tiedAgentId = [0, 2] ropePartIndex = list(range(3, 12)) maxRopePartLength = 0.06 reset = ResetUniformWithoutXPosForLeashed(physicsSimulation, qPosInit, qVelInit, numAgent, tiedAgentId, ropePartIndex, maxRopePartLength, qPosInitNoise, qVelInitNoise) numSimulationFrames = 10 isTerminal = lambda state: False reshapeActionList = [ ReshapeAction(5), ReshapeAction(5), ReshapeAction(masterForce) ] transit = TransitionFunctionWithoutXPos(physicsSimulation, numSimulationFrames, visualize, isTerminal, reshapeActionList) observeOneAgent = lambda agentID: Observe(agentID, wolvesID, sheepsID, masterID, getPosFromAgentState, getVelFromAgentState) observe = lambda state: [ observeOneAgent(agentID)(state) for agentID in range(numAgents) ] initObsForParams = observe(reset()) obsShape = [ initObsForParams[obsID].shape[0] for obsID in range(len(initObsForParams)) ] worldDim = 2 actionDim = worldDim * 2 + 1 layerWidth = [128, 128] #------------ models ------------------------ buildMADDPGModels = BuildMADDPGModels(actionDim, numAgents, obsShape) modelsList = [ buildMADDPGModels(layerWidth, agentID) for agentID in range(numAgents) ] trainCriticBySASR = TrainCriticBySASR(actByPolicyTargetNoisyForNextState, learningRateCritic, gamma) trainCritic = TrainCritic(trainCriticBySASR) trainActorFromSA = TrainActorFromSA(learningRateActor) trainActor = TrainActor(trainActorFromSA) paramUpdateInterval = 1 # updateParameters = UpdateParameters(paramUpdateInterval, tau) sampleBatchFromMemory = SampleFromMemory(minibatchSize) learnInterval = 100 learningStartBufferSize = minibatchSize * maxTimeStep startLearn = StartLearn(learningStartBufferSize, learnInterval) trainMADDPGModels = TrainMADDPGModelsWithBuffer(updateParameters, trainActor, trainCritic, sampleBatchFromMemory, startLearn, modelsList) actOneStepOneModel = ActOneStep(actByPolicyTrainNoisy) actOneStep = lambda allAgentsStates, runTime: [ actOneStepOneModel(model, allAgentsStates) for model in modelsList ] sampleOneStep = SampleOneStep(transit, rewardFunc) runDDPGTimeStep = RunTimeStep(actOneStep, sampleOneStep, trainMADDPGModels, observe=observe) runEpisode = RunEpisode(reset, runDDPGTimeStep, maxTimeStep, isTerminal) getAgentModel = lambda agentId: lambda: trainMADDPGModels.getTrainedModels( )[agentId] getModelList = [getAgentModel(i) for i in range(numAgents)] modelSaveRate = 1000 fileName = "maddpg{}episodes{}step_agent".format(maxEpisode, maxTimeStep) modelPath = os.path.join(modelFolder, fileName) saveModels = [ SaveModel(modelSaveRate, saveVariables, getTrainedModel, modelPath + str(i), saveAllmodels) for i, getTrainedModel in enumerate(getModelList) ] maddpg = RunAlgorithm(runEpisode, maxEpisode, saveModels, numAgents) replayBuffer = getBuffer(bufferSize) meanRewardList, trajectory = maddpg(replayBuffer)
def simuliateOneParameter(parameterOneCondiiton, evalNum, randomSeed): saveTraj = True visualizeTraj = False visualizeMujoco = False numWolves = parameterOneCondiiton['numWolves'] numSheeps = parameterOneCondiiton['numSheeps'] numBlocks = parameterOneCondiiton['numBlocks'] timeconst = parameterOneCondiiton['timeconst'] dampratio = parameterOneCondiiton['dampratio'] maxTimeStep = parameterOneCondiiton['maxTimeStep'] sheepSpeedMultiplier = parameterOneCondiiton['sheepSpeedMultiplier'] individualRewardWolf = parameterOneCondiiton['individualRewardWolf'] hasWalls = parameterOneCondiiton['hasWalls'] dt = parameterOneCondiiton['dt'] print( "maddpg: {} wolves, {} sheep, {} blocks, saveTraj: {}, visualize: {}". format(numWolves, numSheeps, numBlocks, str(saveTraj), str(visualizeTraj))) numAgents = numWolves + numSheeps numEntities = numAgents + numBlocks wolvesID = list(range(numWolves)) sheepsID = list(range(numWolves, numAgents)) blocksID = list(range(numAgents, numEntities)) wolfSize = 0.075 sheepSize = 0.05 blockSize = 0.2 entitiesSizeList = [wolfSize] * numWolves + [sheepSize] * numSheeps + [ blockSize ] * numBlocks wolfMaxSpeed = 1.0 blockMaxSpeed = None sheepMaxSpeedOriginal = 1.3 sheepMaxSpeed = sheepMaxSpeedOriginal * sheepSpeedMultiplier entityMaxSpeedList = [wolfMaxSpeed] * numWolves + [ sheepMaxSpeed ] * numSheeps + [blockMaxSpeed] * numBlocks entitiesMovableList = [True] * numAgents + [False] * numBlocks massList = [1.0] * numEntities isCollision = IsCollision(getPosFromAgentState) punishForOutOfBound = PunishForOutOfBound() rewardSheep = RewardSheep(wolvesID, sheepsID, entitiesSizeList, getPosFromAgentState, isCollision, punishForOutOfBound) if individualRewardWolf: rewardWolf = RewardWolfIndividual(wolvesID, sheepsID, entitiesSizeList, isCollision) else: rewardWolf = RewardWolf(wolvesID, sheepsID, entitiesSizeList, isCollision) rewardFunc = lambda state, action, nextState: list( rewardWolf(state, action, nextState)) + list( rewardSheep(state, action, nextState)) dirName = os.path.dirname(__file__) if hasWalls: physicsDynamicsPath = os.path.join( dirName, '..', '..', 'environment', 'mujocoEnv', 'dt={}'.format(dt), 'hasWalls={}_numBlocks={}_numSheeps={}_numWolves={}timeconst={}dampratio={}.xml' .format(hasWalls, numBlocks, numSheeps, numWolves, timeconst, dampratio)) else: physicsDynamicsPath = os.path.join( dirName, '..', '..', 'environment', 'mujocoEnv', 'numBlocks={}_numSheeps={}_numWolves={}timeconst={}dampratio={}.xml' .format(numBlocks, numSheeps, numWolves, timeconst, dampratio)) with open(physicsDynamicsPath) as f: xml_string = f.read() envXmlDict = xmltodict.parse(xml_string.strip()) envXml = xmltodict.unparse(envXmlDict) physicsModel = mujoco.load_model_from_xml(envXml) physicsSimulation = mujoco.MjSim(physicsModel) # print(physicsSimulation.model.body_pos) qPosInit = [0, 0] * numAgents qVelInit = [0, 0] * numAgents qVelInitNoise = 0 * hasWalls qPosInitNoise = 0.8 * hasWalls getBlockRandomPos = lambda: np.random.uniform(-0.7 * hasWalls, +0.7 * hasWalls, 2) getBlockSpeed = lambda: np.zeros(2) numQPos = len(physicsSimulation.data.qpos) numQVel = len(physicsSimulation.data.qvel) sampleAgentsQPos = lambda: np.asarray(qPosInit) + np.random.uniform( low=-qPosInitNoise, high=qPosInitNoise, size=numQPos) sampleAgentsQVel = lambda: np.asarray(qVelInit) + np.random.uniform( low=-qVelInitNoise, high=qVelInitNoise, size=numQVel) minDistance = 0.2 + 2 * blockSize isOverlap = IsOverlap(minDistance) sampleBlockState = SampleBlockState(numBlocks, getBlockRandomPos, getBlockSpeed, isOverlap) reset = ResetUniformWithoutXPos(physicsSimulation, numAgents, numBlocks, sampleAgentsQPos, sampleAgentsQVel, sampleBlockState) damping = 2.5 numSimulationFrames = int(0.1 / dt) agentsMaxSpeedList = [wolfMaxSpeed] * numWolves + [sheepMaxSpeed ] * numSheeps reshapeAction = ReshapeAction() isTerminal = lambda state: False transit = TransitionFunctionWithoutXPos(physicsSimulation, numAgents, numSimulationFrames, damping * dt * numSimulationFrames, agentsMaxSpeedList, visualizeMujoco, isTerminal, reshapeAction) maxRunningStepsToSample = 100 sampleTrajectory = SampleTrajectory(maxRunningStepsToSample, transit, isTerminal, rewardFunc, reset) observeOneAgent = lambda agentID: Observe(agentID, wolvesID, sheepsID, blocksID, getPosFromAgentState, getVelFromAgentState) observe = lambda state: [ observeOneAgent(agentID)(state) for agentID in range(numAgents) ] initObsForParams = observe(reset()) obsShape = [ initObsForParams[obsID].shape[0] for obsID in range(len(initObsForParams)) ] worldDim = 2 actionDim = worldDim * 2 + 1 layerWidth = [128, 128] # ------------ model ------------------------ buildMADDPGModels = BuildMADDPGModels(actionDim, numAgents, obsShape) modelsList = [ buildMADDPGModels(layerWidth, agentID) for agentID in range(numAgents) ] if hasWalls: modelFolder = os.path.join( dirName, '..', 'trainedModels', 'mujocoMADDPGeavluateWall', 'dt={}'.format(dt), 'hasWalls=' + str(hasWalls) + 'numBlocks=' + str(numBlocks) + 'numSheeps=' + str(numSheeps) + 'numWolves=' + str(numWolves) + 'timeconst=' + str(timeconst) + 'dampratio=' + str(dampratio) + 'individualRewardWolf=' + str(individualRewardWolf) + 'sheepSpeedMultiplier=' + str(sheepSpeedMultiplier)) individStr = 'individ' if individualRewardWolf else 'shared' fileName = "maddpghasWalls={}{}wolves{}sheep{}blocks{}episodes{}stepSheepSpeed{}{}_agent".format( hasWalls, numWolves, numSheeps, numBlocks, maxEpisode, maxTimeStep, sheepSpeedMultiplier, individStr) else: modelFolder = os.path.join( dirName, '..', 'trainedModels', 'mujocoMADDPG', 'numBlocks=' + str(numBlocks) + 'numSheeps=' + str(numSheeps) + 'numWolves=' + str(numWolves) + 'timeconst=' + str(timeconst) + 'dampratio=' + str(dampratio)) fileName = "maddpg{}wolves{}sheep{}blocks60000episodes25stepSheepSpeed1.0shared_agent".format( numWolves, numSheeps, numBlocks) modelPaths = [ os.path.join(modelFolder, fileName + str(i) + '60000eps') for i in range(numAgents) ] [ restoreVariables(model, path) for model, path in zip(modelsList, modelPaths) ] actOneStepOneModel = ActOneStep(actByPolicyTrainNoisy) policy = lambda allAgentsStates: [ actOneStepOneModel(model, observe(allAgentsStates)) for model in modelsList ] startTime = time.time() trajList = [] for i in range(evalNum): np.random.seed(i) traj = sampleTrajectory(policy) trajList.append(list(traj)) endTime = time.time() print("Time taken {} seconds to generate {} trajectories".format( (endTime - startTime), evalNum)) # saveTraj if saveTraj: trajectoryFolder = os.path.join(dirName, '..', 'trajectory', 'evluateWall') if not os.path.exists(trajectoryFolder): os.makedirs(trajectoryFolder) trajectorySaveExtension = '.pickle' fixedParameters = {'randomSeed': randomSeed, 'evalNum': evalNum} generateTrajectorySavePath = GetSavePath(trajectoryFolder, trajectorySaveExtension, fixedParameters) trajectorySavePath = generateTrajectorySavePath(parameterOneCondiiton) saveToPickle(trajList, trajectorySavePath) # visualize if visualizeTraj: entitiesColorList = [wolfColor] * numWolves + [ sheepColor ] * numSheeps + [blockColor] * numBlocks render = Render(entitiesSizeList, entitiesColorList, numAgents, getPosFromAgentState) print(trajList[0][0], '!!!3', trajList[0][1]) trajToRender = np.concatenate(trajList) render(trajToRender) return endTime - startTime
def main(): debug = 1 if debug: numWolves = 2 numSheeps = 4 numBlocks = 2 hasWalls = 1.0 dt = 0.02 maxTimeStep = 25 sheepSpeedMultiplier = 1.0 individualRewardWolf = int(False) mujocoVisualize = False saveAllmodels = True else: print(sys.argv) condition = json.loads(sys.argv[1]) numWolves = int(condition['numWolves']) numSheeps = int(condition['numSheeps']) numBlocks = int(condition['numBlocks']) hasWalls = float(condition['hasWalls']) dt = float(condition['dt']) maxTimeStep = int(condition['maxTimeStep']) sheepSpeedMultiplier = float(condition['sheepSpeedMultiplier']) individualRewardWolf = int(condition['individualRewardWolf']) saveAllmodels = True mujocoVisualize = False print( "maddpg: {} wolves, {} sheep, {} blocks, {} episodes with {} steps each eps, sheepSpeed: {}x, wolfIndividualReward: {}, save all models: {}" .format(numWolves, numSheeps, numBlocks, maxEpisode, maxTimeStep, sheepSpeedMultiplier, individualRewardWolf, str(saveAllmodels))) dataMainFolder = os.path.join(dirName, '..', 'trainedModels', 'mujocoMADDPG') modelFolder = os.path.join( dataMainFolder, 'dt={}'.format(dt), 'hasWalls={}_numBlocks={}_numSheeps={}_numWolves={}_individualRewardWolf={}_sheepSpeedMultiplier={}.xml' .format(hasWalls, numBlocks, numSheeps, numWolves, individualRewardWolf, sheepSpeedMultiplier)) if not os.path.exists(modelFolder): os.makedirs(modelFolder) numAgents = numWolves + numSheeps numEntities = numAgents + numBlocks wolvesID = list(range(numWolves)) sheepsID = list(range(numWolves, numAgents)) blocksID = list(range(numAgents, numEntities)) wolfSize = 0.075 sheepSize = 0.05 blockSize = 0.2 entitiesSizeList = [wolfSize] * numWolves + [sheepSize] * numSheeps + [ blockSize ] * numBlocks isCollision = IsCollision(getPosFromAgentState) punishForOutOfBound = lambda state: 0 #PunishForOutOfBound() rewardSheep = RewardSheep(wolvesID, sheepsID, entitiesSizeList, getPosFromAgentState, isCollision, punishForOutOfBound) if individualRewardWolf: rewardWolf = RewardWolfIndividual(wolvesID, sheepsID, entitiesSizeList, isCollision) else: rewardWolf = RewardWolf(wolvesID, sheepsID, entitiesSizeList, isCollision) rewardFunc = lambda state, action, nextState: \ list(rewardWolf(state, action, nextState)) + list(rewardSheep(state, action, nextState)) #------------ mujocoEnv ------------------------ physicsDynamicsPath = os.path.join( dirName, '..', '..', 'environment', 'mujocoEnv', 'dt={}'.format(dt), 'hasWalls={}_numBlocks={}_numSheeps={}_numWolves={}.xml'.format( hasWalls, numBlocks, numSheeps, numWolves)) with open(physicsDynamicsPath) as f: xml_string = f.read() envXmlDict = xmltodict.parse(xml_string.strip()) envXml = xmltodict.unparse(envXmlDict) physicsModel = mujoco.load_model_from_xml(envXml) physicsSimulation = mujoco.MjSim(physicsModel) qPosInit = [0, 0] * numAgents qVelInit = [0, 0] * numAgents qVelInitNoise = 0 * hasWalls qPosInitNoise = 0.8 * hasWalls getBlockRandomPos = lambda: np.random.uniform(-0.7 * hasWalls, +0.7 * hasWalls, 2) getBlockSpeed = lambda: np.zeros(2) numQPos = len(physicsSimulation.data.qpos) numQVel = len(physicsSimulation.data.qvel) sampleAgentsQPos = lambda: np.asarray(qPosInit) + np.random.uniform( low=-qPosInitNoise, high=qPosInitNoise, size=numQPos) sampleAgentsQVel = lambda: np.asarray(qVelInit) + np.random.uniform( low=-qVelInitNoise, high=qVelInitNoise, size=numQVel) minDistance = 0.2 + 2 * blockSize #>2*wolfSize+2*blockSize isOverlap = IsOverlap(minDistance) sampleBlockState = SampleBlockState(numBlocks, getBlockRandomPos, getBlockSpeed, isOverlap) reset = ResetUniformWithoutXPos(physicsSimulation, numAgents, numBlocks, sampleAgentsQPos, sampleAgentsQVel, sampleBlockState) transitTimePerStep = 0.1 numSimulationFrames = int(transitTimePerStep / dt) isTerminal = lambda state: [False] * numAgents reshapeAction = ReshapeAction() transit = TransitionFunction(physicsSimulation, numAgents, numSimulationFrames, mujocoVisualize, isTerminal, reshapeAction) observeOneAgent = lambda agentID: Observe(agentID, wolvesID, sheepsID, blocksID, getPosFromAgentState, getVelFromAgentState) observe = lambda state: [ observeOneAgent(agentID)(state) for agentID in range(numAgents) ] initObsForParams = observe(reset()) obsShape = [ initObsForParams[obsID].shape[0] for obsID in range(len(initObsForParams)) ] worldDim = 2 actionDim = worldDim * 2 + 1 layerWidth = [128, 128] #------------ models ------------------------ buildMADDPGModels = BuildMADDPGModels(actionDim, numAgents, obsShape) modelsList = [ buildMADDPGModels(layerWidth, agentID) for agentID in range(numAgents) ] trainCriticBySASR = TrainCriticBySASR(actByPolicyTargetNoisyForNextState, learningRateCritic, gamma) trainCritic = TrainCritic(trainCriticBySASR) trainActorFromSA = TrainActorFromSA(learningRateActor) trainActor = TrainActor(trainActorFromSA) paramUpdateInterval = 1 # updateParameters = UpdateParameters(paramUpdateInterval, tau) sampleBatchFromMemory = SampleFromMemory(minibatchSize) learnInterval = 100 learningStartBufferSize = minibatchSize * maxTimeStep startLearn = StartLearn(learningStartBufferSize, learnInterval) trainMADDPGModels = TrainMADDPGModelsWithBuffer(updateParameters, trainActor, trainCritic, sampleBatchFromMemory, startLearn, modelsList) actOneStepOneModel = ActOneStep(actByPolicyTrainNoisy) actOneStep = lambda allAgentsStates, runTime: [ actOneStepOneModel(model, allAgentsStates) for model in modelsList ] sampleOneStep = SampleOneStep(transit, rewardFunc) runDDPGTimeStep = RunTimeStep(actOneStep, sampleOneStep, trainMADDPGModels, observe=observe) runEpisode = RunEpisode(reset, runDDPGTimeStep, maxTimeStep, isTerminal) getAgentModel = lambda agentId: lambda: trainMADDPGModels.getTrainedModels( )[agentId] getModelList = [getAgentModel(i) for i in range(numAgents)] modelSaveRate = 1000 individStr = 'individ' if individualRewardWolf else 'shared' fileName = "maddpghasWalls={}{}wolves{}sheep{}blocks{}episodes{}stepSheepSpeed{}{}_agent".format( hasWalls, numWolves, numSheeps, numBlocks, maxEpisode, maxTimeStep, sheepSpeedMultiplier, individStr) modelPath = os.path.join(modelFolder, fileName) saveModels = [ SaveModel(modelSaveRate, saveVariables, getTrainedModel, modelPath + str(i), saveAllmodels) for i, getTrainedModel in enumerate(getModelList) ] maddpg = RunAlgorithm(runEpisode, maxEpisode, saveModels, numAgents) replayBuffer = getBuffer(bufferSize) meanRewardList, trajectory = maddpg(replayBuffer)