Exemple #1
0
RL = PolicyGradient(
    n_actions=env.n_actions,
    n_features=env.n_features,
    learning_rate=0.01,
    reward_decay=0.99,
)

fid_max = 0
for episode in range(500):

    observation = env.reset()
    for ii in range(N):

        action = RL.choose_action(observation)
        observation_, reward, done, fid = env.step(action, ii)
        RL.store_transition(observation, action, reward)
        observation = observation_

        if done or ii >= N - 1:

            break

    if episode >= 490:
        if fid > fid_max:
            fid_max = np.copy(fid)

    RL.learn()

print('Final_fidelity=', fid_max)
Exemple #2
0
    learning_rate=0.01,
    reward_decay=0.9,
    e_greedy=0.99,
    replace_target_iter=200,
    memory_size=2000,
    e_greedy_increment=0.001,
)

step = 0
fid_max = 0
for episode in range(500):
    observation = env.reset()

    for i in range(N):
        action = RL.choose_action(observation)
        observation_, reward, done, fidelity = env.step(action, i)
        RL.store_transition(observation, action, reward, observation_)

        if (step > 500) and (step % 5 == 0):
            RL.learn()

        observation = observation_

        if done:
            break

        step += 1

    if episode >= 490:
        if fidelity > fid_max:
            fid_max = np.copy(fidelity)