def compute_inverse_dist_random_search(env_variables: EnvVariables, index_param: int, epsilon: float) -> List[float]: num_params = len(env_variables.get_params()) env_value = env_variables.get_param(index=index_param).get_current_value() sol1 = (env_value * (-epsilon) * num_params - 2 * env_value) / (epsilon * num_params - 2) sol2 = (2 * env_value - env_value * epsilon * num_params) / (epsilon * num_params + 2) return [sol1, sol2]
def get_binary_search_candidate( t_env_variables: EnvVariables, f_env_variables: EnvVariables, algo_name: str, env_name: str, param_names, discrete_action_space: bool, buffer_env_predicate_pairs: BufferEnvPredicatePairs, ) -> EnvVariables: original_max_iterations = 50 logger = Log("get_binary_search_candidate") max_number_iterations = original_max_iterations candidate_new_env_variables = copy.deepcopy(t_env_variables) while True: # compute all possible combinations of environments candidates_dict = dict() t_f_env_variables = random.choice([(t_env_variables, True), (f_env_variables, False)]) for i in range(len(t_env_variables.get_params())): new_value = ( t_env_variables.get_param(index=i).get_current_value() + f_env_variables.get_param(index=i).get_current_value()) / 2 if i not in candidates_dict: candidates_dict[i] = [] if (t_env_variables.get_param(index=i).get_current_value() != f_env_variables.get_param(index=i).get_current_value()): candidates_dict[i].append(new_value) for index in range(len(t_env_variables.get_params())): if index not in candidates_dict: candidates_dict[index] = [] if index != i: candidates_dict[index].append( t_f_env_variables[0].get_values()[index]) all_candidates = list( itertools.product(*list(candidates_dict.values()))) logger.info("t_env: {}, f_env: {}".format( t_env_variables.get_params_string(), f_env_variables.get_params_string())) logger.info("all candidates binary search: {}".format(all_candidates)) all_candidates_env_variables_filtered = [] all_candidates_env_variables = [] for candidate_values in all_candidates: env_values = dict() for i in range(len(t_f_env_variables[0].get_params())): param_name = t_f_env_variables[0].get_param(index=i).get_name() env_values[param_name] = candidate_values[i] candidate_env_variables = instantiate_env_variables( algo_name=algo_name, discrete_action_space=discrete_action_space, env_name=env_name, param_names=param_names, env_values=env_values, ) # do not consider candidate = t_f_env_variables if not candidate_env_variables.is_equal( t_env_variables) and not candidate_env_variables.is_equal( f_env_variables): if not buffer_env_predicate_pairs.is_already_evaluated( candidate_env_variables=candidate_env_variables): all_candidates_env_variables_filtered.append( candidate_env_variables) all_candidates_env_variables.append(candidate_env_variables) if len(all_candidates_env_variables_filtered) > 0: candidate_new_env_variables = random.choice( all_candidates_env_variables_filtered) break else: assert len( all_candidates ) > 0, "there must be at least one candidate env for binary search" candidate_env_variables_already_evaluated = random.choice( all_candidates_env_variables_filtered) if t_f_env_variables[1]: t_env_variables = copy.deepcopy( candidate_env_variables_already_evaluated) else: f_env_variables = copy.deepcopy( candidate_env_variables_already_evaluated) max_number_iterations -= 1 if max_number_iterations == 0: break assert max_number_iterations > 0, "Could not binary mutate any param of envs {} and {} in {} steps".format( t_env_variables.get_params_string(), f_env_variables.get_params_string(), str(original_max_iterations)) assert not candidate_new_env_variables.is_equal( t_env_variables ) and not candidate_new_env_variables.is_equal( f_env_variables ), "candidate_env_variables {} must be different than t_env_variables {} and f_env_variables {}".format( candidate_new_env_variables.get_params_string(), t_env_variables.get_params_string(), f_env_variables.get_params_string(), ) return candidate_new_env_variables