def evolve_policy(self):
   """ Evolve a specialized policy using learned model. """
   pool = spawn(Genome.open(PREFIX + 'model.net'), 50)
   feval = functions.Evaluator(self.model)
   self.org = max(eonn.optimize(pool, feval.call, 2500, verbose=False))
   self.org.evals = []
   self.pool.append(self.org)
 def evolve_policy(self):
     """ Evolve a specialized policy using learned model. """
     pool = spawn(Genome.open(PREFIX + "model.net"), 50)
     feval = functions.Evaluator(self.model)
     self.org = max(eonn.optimize(pool, feval.call, 2500, verbose=False))
     self.org.evals = []
     self.pool.append(self.org)
Exemple #3
0
def main():
    output = open("log_%s.txt" % "".join(random.sample(letters + digits, 10)), "w")
    pool = organism.spawn(Genome.open(PROTOTYPE), 30)
    for i in range(25):
        pool, champion = optimize(pool, race_resampling, hover, 20000)
        output.write("%i %.3f\n" % ((i + 1) * 20000, champion.fitness))
        output.flush()
    output.close()
Exemple #4
0
def main():
    output = open('log_%s.txt' % ''.join(random.sample(letters + digits, 10)),
                  'w')
    pool = organism.spawn(Genome.open(PROTOTYPE), 30)
    for i in range(25):
        pool, champion = optimize(pool, race_resampling, hover, 20000)
        output.write('%i %.3f\n' % ((i + 1) * 20000, champion.fitness))
        output.flush()
    output.close()
def evolve(heli, genome, popsize=50, epochs=100, keep=49, mutate_prob=.75, mutate_frac=.1, mutate_std=.8, mutate_repl=.25, verbose=False):
  """ Evolve a specialized policy for the given helicopter environment. """
  # Set evolutionary parameters
  eonn.keep = keep
  eonn.mutate_prob = mutate_prob
  eonn.mutate_frac = mutate_frac
  eonn.mutate_std = mutate_std
  eonn.mutate_repl = mutate_repl
  # Evolve population and return champion
  feval = Evaluator(heli)
  pool = spawn(genome, popsize)
  return max(eonn.optimize(pool, feval.call, epochs, 1, verbose))
def evolve(heli,
           genome,
           popsize=50,
           epochs=100,
           keep=49,
           mutate_prob=.75,
           mutate_frac=.1,
           mutate_std=.8,
           mutate_repl=.25,
           verbose=False):
    """ Evolve a specialized policy for the given helicopter environment. """
    # Set evolutionary parameters
    eonn.keep = keep
    eonn.mutate_prob = mutate_prob
    eonn.mutate_frac = mutate_frac
    eonn.mutate_std = mutate_std
    eonn.mutate_repl = mutate_repl
    # Evolve population and return champion
    feval = Evaluator(heli)
    pool = spawn(genome, popsize)
    return max(eonn.optimize(pool, feval.call, epochs, 1, verbose))