Exemple #1
0
def test_shell_pspec_dft():
    """
    Take a gaussian shell and confirm its power spectrum using shell_project_pspec.
    """

    select_radius = 10.  #degrees
    N_sections = 10

    Nside = 256
    Npix = 12 * Nside**2
    Omega = 4 * np.pi / float(Npix)

    Nfreq = 100
    freqs = np.linspace(167.0, 177.0, Nfreq)
    dnu = np.diff(freqs)[0]
    Z = 1420 / freqs - 1.

    sig = 2.0
    mu = 0.0
    shell = np.random.normal(mu, sig, (Npix, Nfreq))
    dV0 = comoving_voxel_volume(Z[Nfreq / 2], dnu, Omega)
    for fi in range(Nfreq):
        dV = comoving_voxel_volume(Z[fi], dnu, Omega)
        shell[:, fi] = np.random.normal(mu, sig * np.sqrt(dV0 / dV), Npix)

    kbins, pk, errs = pspec_funcs.shell_project_pspec(shell,
                                                      Nside,
                                                      select_radius,
                                                      freqs=freqs,
                                                      Nkbins=100,
                                                      N_sections=N_sections,
                                                      cosmo=True,
                                                      method='dft',
                                                      error=True)

    tol = np.sqrt(np.var(pk))
    print 'Tolerance: ', tol
    print 'Error: ', np.mean(pk / (sig**2 * dV0))

    nt.assert_true(np.isclose(np.mean(pk), sig**2 * dV0, atol=tol))
Exemple #2
0
def compare_averages_shell_pspec_dft():
    """
    Take a gaussian shell and confirm its power spectrum using shell_project_pspec.
    """

    import pylab as pl
    select_radius = 5.  #degrees

    Nside = 256
    Npix = 12 * Nside**2
    Omega = 4 * np.pi / float(Npix)

    Nfreq = 100
    freqs = np.linspace(167.0, 177.0, Nfreq)
    dnu = np.diff(freqs)[0]
    Z = 1420 / freqs - 1.

    sig = 2.0
    mu = 0.0
    shell = np.random.normal(mu, sig, (Npix, Nfreq))

    dV = comoving_voxel_volume(Z[Nfreq / 2], dnu, Omega)
    variances = []
    pks = []

    fig, (ax0, ax1, ax2) = pl.subplots(nrows=1, ncols=3)
    steps = range(10, 110, 10)
    for n in steps:
        Nkbins = 100
        kbins, pk = pspec_funcs.shell_project_pspec(shell,
                                                    Nside,
                                                    select_radius,
                                                    freqs=freqs,
                                                    Nkbins=Nkbins,
                                                    N_sections=n,
                                                    cosmo=True,
                                                    method='dft',
                                                    error=False)
        variances.append(np.var(pk[0:Nkbins - 5]))
        pks.append(pk)
        ax0.plot(kbins, pk, label=str(n))

    ax0.axhline(y=dV * sig**2)
    ax0.legend()
    ax1.plot(steps, variances)
    ax2.imshow(np.log10(np.array(pks)[:, 0:Nkbins - 5]), aspect='auto')
    pl.show()
Exemple #3
0
def compare_selection_radii_shell_pspec_dft():
    import pylab as pl
    N_sections = 20

    Nside = 256
    Npix = 12 * Nside**2
    Omega = 4 * np.pi / float(Npix)

    Nfreq = 100
    freqs = np.linspace(167.0, 177.0, Nfreq)
    dnu = np.diff(freqs)[0]
    Z = 1420 / freqs - 1.

    sig = 2.0
    mu = 0.0
    shell = np.random.normal(mu, sig, (Npix, Nfreq))

    dV = comoving_voxel_volume(Z[Nfreq / 2], dnu, Omega)
    variances = []
    pks = []
    means = []

    fig, (ax0, ax1, ax2) = pl.subplots(nrows=1, ncols=3)
    steps = np.linspace(2, 20, 20)
    for s in steps:
        Nkbins = 100
        kbins, pk = pspec_funcs.shell_project_pspec(shell,
                                                    Nside,
                                                    s,
                                                    freqs=freqs,
                                                    Nkbins=Nkbins,
                                                    N_sections=N_sections,
                                                    cosmo=True,
                                                    method='dft',
                                                    error=False)
        variances.append(np.var(pk[0:Nkbins - 5]))
        pks.append(pk)
        means.append(np.mean(pk[0:Nkbins - 5]))
        ax0.plot(kbins, pk, label=u'{:0.2f}°'.format(s))

    ax0.axhline(y=dV * sig**2)
    ax0.legend()
    ax1.plot(steps, means)
    im = ax2.imshow(np.log10(np.array(pks)[:, 0:Nkbins - 5]), aspect='auto')
    fig.colorbar(im, ax=ax2)
    pl.show()
Exemple #4
0
def test_orthoslant_project():
    Nside = 256
    Npix = 12 * Nside**2
    Omega = 4 * np.pi / float(Npix)

    Nfreq = 100
    freqs = np.linspace(167.0, 177.0, Nfreq)
    dnu = np.diff(freqs)[0]
    Z = 1420 / freqs - 1.

    sig = 2.0
    mu = 0.0
    shell = np.random.normal(mu, sig, (Npix, Nfreq))
    center = [np.sqrt(2) / 2., np.sqrt(2) / 2., 0]

    ## For orientation tests, replace with a single point at center
    #    import healpy
    #    cind = healpy.vec2pix(Nside, *center)
    #    shell *= 0.0
    #    shell[cind] += 10

    orthogrid = pspec_funcs.orthoslant_project(shell, center, 10, degrees=True)
    Nx, Ny, Nz = orthogrid.shape
    Lx = comoving_transverse_length(Z[Nfreq / 2], Omega) * Nx
    Ly = Lx
    Lz = comoving_radial_length(Z[Nfreq / 2], dnu) * Nz

    dV = comoving_voxel_volume(Z[Nfreq / 2], dnu, Omega)

    r_mpc = WMAP9.comoving_distance(Z).to("Mpc").value
    kbins, pk = pspec_funcs.box_dft_pspec(orthogrid, [Lx, Ly, Lz],
                                          r_mpc=r_mpc,
                                          cosmo=True)

    tol = np.sqrt(np.var(pk))

    nt.assert_true(np.allclose(np.mean(pk), sig**2 * dV, atol=tol))
Exemple #5
0
# Frequency
freqs  = np.linspace(1e8, 1.3e8, Nfreqs)  #30 MHz
Nfreqs = freqs.size

# Shells
Nside = args.Nside
Npix = 12*Nside**2
sig = args.sigma
Nskies = args.Nskies
#shell0 = np.zeros((Nskies,Npix,Nfreqs), dtype=float)
shell0 = utils.mparray((Nskies, Npix, Nfreqs), dtype=float)
#shell0 = np.random.normal(0.0, sig, (Nskies, Npix, Nfreqs))
dnu = np.diff(freqs)[0]/1e6
om = 4*np.pi/float(Npix)
Zs = 1420e6/freqs - 1
dV0 = comoving_voxel_volume(Zs[Nfreqs/2], dnu, om)
print("Making skies")
for fi in range(Nfreqs):
    dV = comoving_voxel_volume(Zs[fi], dnu, om) 
    s = sig  * np.sqrt(dV0/dV)
    shell0[:,:,fi] = np.random.normal(0.0, s, (Nskies, Npix))

#Make observatories
visibs = []
#fwhms = [2.5, 5.0, 10.0, 20.0, 25.0, 30.0]
#fwhms = [35, 40, 45.0, 50.0, 55.0, 60.0]
fwhm = args.fwhm
sigma = fwhm/2.355
obs = visibility.observatory(latitude, longitude, array=[bl], freqs=freqs)
obs.set_fov(fov)
obs.set_pointings(time_arr)
Exemple #6
0
def compare_selection_radii_shell_pspec_dft():
    N_sections=10

    Nside=256
    Npix = 12 * Nside**2
    Omega = 4*np.pi/float(Npix)

    Nfreq = 100
    freqs = np.linspace(167.0, 177.0, Nfreq)
    dnu = np.diff(freqs)[0]
    Z = 1420/freqs - 1.

    sig = 2.0
    mu = 0.0
    shell = np.random.normal(mu, sig, (Npix, Nfreq))

    dV = comoving_voxel_volume(Z[Nfreq/2], dnu, Omega)
    variances = []
    pks = []
    means = []

    gs = gridspec.GridSpec(2, 3)
    fig = pl.figure()

    ax0 = pl.subplot(gs[0, 0:2])
    ax1 = pl.subplot(gs[1, 0])
    ax3 = pl.subplot(gs[1, 1])
    ax2 = pl.subplot(gs[:, 2])

    steps = np.linspace(2,20,20)
    vmin,vmax = min(steps),max(steps)
    normalize = mcolors.Normalize(vmin=vmin, vmax=vmax)
    colormap = cm.viridis

    for s in steps:
        Nkbins = 100
        kbins, pk = pspec_funcs.shell_project_pspec(shell, Nside, s, freqs=freqs, Nkbins=Nkbins, N_sections=N_sections, cosmo=True, method='dft', error=False)
        variances.append(np.var(pk[0:Nkbins-5]))
        pks.append(pk)
        means.append(np.mean(pk[0:Nkbins-5]))
        ax0.plot(kbins, pk, label=u'{:0.2f}°'.format(s), color=colormap(normalize(s)))

    ax0.axhline(y=dV*sig**2)
#    ax0.legend(ncol=2,loc=3)
    scalarmappable = cm.ScalarMappable(norm=normalize, cmap=colormap)
    scalarmappable.set_array(steps)
    fig.colorbar(scalarmappable,label=r'Selection radius', ax=ax0)
    ax0.set_ylabel(r"P(k) [mK$^2$ Mpc$^{3}]$")
    ax0.set_xlabel(r"k [Mpc$^{-1}]$")
    ax1.plot(steps, np.array(variances), label="Variance")
    ax1.set_ylabel(r"Variance(P(k)) [mK$^4$ Mpc$^{6}]$")
    ax1.set_xlabel(u"Selection radius (degrees)")
    ax3.plot(steps, means, label="Mean")
    ax3.set_ylabel(r"Mean(P(k)) [mK$^2$ Mpc$^{3}]$")
    ax3.set_xlabel(u"Selection radius (degrees)")
    ax1.legend()
    ax3.legend()
    ax1.xaxis.set_major_formatter(FormatStrFormatter(u'%0.2f°'))
    ax3.xaxis.set_major_formatter(FormatStrFormatter(u'%0.2f°'))
    im = ax2.imshow(np.array(pks)[:,0:Nkbins-5], aspect='auto', norm=mcolors.LogNorm())
    fig.colorbar(im, ax=ax2)
    pl.show()
Exemple #7
0
def compare_averages_shell_pspec_dft():
    """
    Take a gaussian shell and confirm its power spectrum using shell_project_pspec.
    """

    select_radius = 5. #degrees

    Nside=256
    Npix = 12 * Nside**2
    Omega = 4*np.pi/float(Npix)

    Nfreq = 100
    freqs = np.linspace(167.0, 177.0, Nfreq)
    dnu = np.diff(freqs)[0]
    Z = 1420/freqs - 1.

    sig = 2.0
    mu = 0.0
    shell = np.random.normal(mu, sig, (Npix, Nfreq))

    dV = comoving_voxel_volume(Z[Nfreq/2], dnu, Omega)
    variances = []
    means = []
    pks = []

    gs = gridspec.GridSpec(2, 3)
    fig = pl.figure()

    ax0 = pl.subplot(gs[0, 0:2])
    ax1 = pl.subplot(gs[1, 0])
    ax3 = pl.subplot(gs[1, 1])
    ax2 = pl.subplot(gs[:, 2])

    steps = range(10,110,10)
    vmin,vmax = min(steps),max(steps)
    normalize = mcolors.Normalize(vmin=vmin, vmax=vmax)
    colormap = cm.viridis

    for n in steps:
        Nkbins = 100
        kbins, pk = pspec_funcs.shell_project_pspec(shell, Nside, select_radius, freqs=freqs, Nkbins=Nkbins, N_sections=n, cosmo=True, method='dft', error=False)
        variances.append(np.var(pk[0:Nkbins-5]))
        means.append(np.mean(pk[0:Nkbins-5]))
        pks.append(pk)
        ax0.plot(kbins, pk, label=str(n), color=colormap(normalize(n)))

    ax0.axhline(y=dV*sig**2, color='k', lw=2.0)
#    ax0.legend()
    scalarmappable = cm.ScalarMappable(norm=normalize, cmap=colormap)
    scalarmappable.set_array(steps)
    fig.colorbar(scalarmappable,label=r'Number of snapshots', ax=ax0)
    ax0.set_ylabel(r"P(k) [mK$^2$ Mpc$^{3}]$")
    ax0.set_xlabel(r"k [Mpc$^{-1}]$")
    ax1.plot(steps, np.array(variances), label="Variance")
    ax1.set_ylabel(r"Variance(P(k)) [mK$^4$ Mpc$^{6}]$")
    ax1.set_xlabel(u"Number of 5° snapshots")
    ax3.plot(steps, means, label="Mean")
    ax3.set_ylabel(r"Mean(P(k)) [mK$^2$ Mpc$^{3}]$")
    ax3.set_xlabel(u"Number of 5° snapshots")
    ax1.legend()
    ax3.legend()
    im = ax2.imshow(np.array(pks)[:,0:Nkbins-5], aspect='auto')#, norm=mcolors.LogNorm())
    fig.colorbar(im, ax=ax2)
    print('Fractional deviation: ', np.mean(np.abs(pk - dV*sig**2)))
    pl.show()
Exemple #8
0
        #        bins = np.average(bins, axis=0)
        #        cs   = np.average(cs, axis=0)
        save_dict['covar_data'] = cs
        time_arr = np.average(bins, axis=0)
    version = data_cfg['root'].split('/')[-1]
    save_dict['times'] = time_arr
    save_results(save_dict, data_cfg, out_cfg)

# Get a reference line, if available
if 'Nside' in catalog_cfg:
    if 'sigma' in catalog_cfg:
        nside = catalog_cfg['Nside']
        sigma = catalog_cfg['sigma']
        om = 4 * np.pi / (12. * nside**2)
        dnu = np.diff(freq_obs)[0] / 1e6  #MHz
        ref_line = comoving_voxel_volume(Zmean, dnu, om) * (sigma)**2
if 'furlanetto_flat' in catalog_cfg:
    f = readsav('/users/alanman/FHD/catalog_data/eor_power_1d.idlsave')
    maxpow = max(f['power'])
    ref_line = maxpow / 0.7**3  #Furlanetto's curve includes little-h
if 'npz' in catalog_cfg:
    # Setting reference level to the most averaged spectrum in an npz file.
    f = np.load(catalog_cfg['npz'])
    try:
        ref_avg_mode = f['avg_mode']
    except KeyError:
        ref_avg_mode = 'over_k'

    ref_avgs = f['avgs']
    if ref_avg_mode == 'over_k':
        print ref_avgs.shape