Exemple #1
0
    def setUp(self):
        self.BN1 = dag.bayes_net_from_script('''
        PCore A {
        A = 5
        B = A * 4
        C = B + B2
        D = pow(C)
        }
        ''')

        self.BN2 = dag.bayes_net_from_script('''
        PCore B2 {
        C = B
        D = pow(C)
        }
        ''')
Exemple #2
0
    def test_clone(self):
        script = '''
        PCore Regression {
            x = 1
            y = x + 1
            z = y + 1
        }
        '''

        bn = dag.bayes_net_from_script(script)

        na = dag.NodeSet('a')
        nb = na.new_child('b', as_fixed=['x'])
        nb.new_child('c', as_fixed=['z'])

        sc = dag.as_simulation_core(bn, na)

        pc_a = sc.generate('A')
        pc_b = pc_a.breed('B', 'b')
        pc_c = pc_b.breed('C', 'c')

        pc_aa = pc_a.clone(copy_sc=True, include_children=True)
        pc_cc = pc_aa.find_descendant('B@C')

        self.assertEqual(pc_c['z'], 3)
        self.assertEqual(pc_cc['z'], 3)

        pc_aa.impulse({'x': 5})
        self.assertEqual(pc_c['z'], 3)
        self.assertEqual(pc_cc['z'], 7)

        pc_a.impulse({'x': 7})
        self.assertEqual(pc_c['z'], 9)
        self.assertEqual(pc_cc['z'], 7)
Exemple #3
0
def quick_build_parameter_core(script):
    bn = dag.bayes_net_from_script(script)
    flt = [d for d in bn.Leaves if bn.is_rv(d)]

    ns = NodeSet('Root', as_floating=flt)
    sm = as_simulation_core(bn, ns)
    return sm.generate('')
Exemple #4
0
    def test_div(self):
        bn = dag.bayes_net_from_script(script_betabin2)

        ns = dag.NodeSet('root')
        ns.new_child('a', as_floating=['x1'])
        ns.new_child('b', as_floating=['x2'])

        sc = dag.as_simulation_core(bn, ns)
        pc = sc.generate("T4")
        pc_a = pc.breed('A', 'a')
        pc_b = pc.breed('B', 'b')

        self.assertIn('x1', pc_a.get_samplers())
        self.assertIn('x2', pc_b.get_samplers())
import epidag as dag

__author__ = 'TimeWz667'

script = '''
PCore BetaBin {
    al = 1
    be = 1
    p ~ beta(al, be)
    x ~ binom(5, p)
}
'''

bn = dag.bayes_net_from_script(script)

ns = dag.NodeSet('root', as_fixed=['al'], as_floating=['p'])
ns.new_child('ag', as_floating=['x'])

sc = dag.as_simulation_core(bn, ns)
sc.deep_print()

pc = sc.generate('a')
p = pc.breed('x', 'ag')

print(p.get_sampler('p'))
Exemple #6
0
 def test_no_exo(self):
     bn = dag.bayes_net_from_script(script_betabin)
     sc = dag.as_simulation_core(bn)
     pc = sc.generate("T3")
     with self.assertRaises(KeyError):
         pc.get_sampler('x')()
Exemple #7
0
 def test_random(self):
     bn = dag.bayes_net_from_script(script_betabin)
     ns = dag.NodeSet('Root', as_floating=['p'])
     sc = dag.as_simulation_core(bn, ns)
     pc = sc.generate("T2", {'n': 10})
     self.assertSetEqual(set(pc.get_samplers().keys()), {'x', 'p'})
Exemple #8
0
 def test_simple(self):
     bn = dag.bayes_net_from_script(script_betabin)
     sc = dag.as_simulation_core(bn)
     pc = sc.generate("T1", {'n': 10})
     self.assertEqual(pc['n'], 10)
Exemple #9
0
 def setUp(self):
     self.BN = dag.bayes_net_from_script(scr)
     self.DM = BinBeta(self.BN, data)
     self.Logger = logging.getLogger(__name__)
Exemple #10
0
            BayesianModel.__init__(self, bn, pars=['prob'])
            self.Data = data

        @property
        def has_exact_likelihood(self):
            return True

        def evaluate_distance(self, pars):
            di = 0
            for d in self.Data:
                pars.update(d)
                di += self.BN['x'].evaluate(pars)
            return di

        def evaluate_likelihood(self, pars):
            return -self.evaluate_distance(pars)

    data = [{'id': 1, 'n': 10, 'x': 4}, {'id': 2, 'n': 20, 'x': 7}]

    bn = bayes_net_from_script('''
    PCore test {
        prob ~ beta(1, 1)
        x ~ binom(n, prob)    
    }
    ''')

    model = BinBeta(bn, data)

    p = model.sample_prior()
    print(p)
Exemple #11
0
        if self.FloatingNodes:
            print('{}|-Floating {}'.format(ind, list(self.FloatingNodes)))
        if self.ExoNodes:
            print('{}|-Exo {}'.format(ind, list(self.ExoNodes)))
        if self.ListeningNodes:
            print('{}|-Listening {}'.format(ind, list(self.ListeningNodes)))
        for ch in self.__children.values():
            ch.print(i + 2)


if __name__ == '__main__':
    from epidag import bayes_net_from_script

    bn1 = bayes_net_from_script('''
    PCore Test {
        a = 1
        b = a + 3
        c = b * 2
        d ~ binom(b, 0. 5)
        e = d + c
    }
    ''')

    ndr = NodeSet('root', as_fixed=['a'])
    nds = ndr.new_child('med', as_fixed=['b'], as_floating=['d'])
    nde = nds.new_child('leaf', as_fixed=['e'])

    ndr.inject_bn(bn1)

    ndr.print()