def test_set_outputs(self): model = em.PheSEIRModel() outputs = ['S', 'I1', 'I2', 'Incidence'] model.set_outputs(outputs) with self.assertRaises(ValueError): outputs1 = ['S', 'E', 'I1', 'I2', 'Incidence'] model.set_outputs(outputs1)
def test__init__(self): model = em.PheSEIRModel() self.assertEqual(model._output_names, ['S', 'E1', 'E2', 'I1', 'I2', 'R', 'Incidence']) self.assertEqual( model._parameter_names, ['S0', 'E10', 'E20', 'I10', 'I20', 'R0', 'beta', 'kappa', 'gamma']) self.assertEqual(model._n_outputs, 7) self.assertEqual(model._n_parameters, 9)
def test_samples_positive_tests(self): model = em.PheSEIRModel() # Populate the model regions = ['London', 'Cornwall'] age_groups = ['0-10', '10-25'] # Initial state of the system contact_data_matrix_0 = np.array([[1, 0], [0, 3]]) contact_data_matrix_1 = np.array([[10, 5.2], [0, 3]]) region_data_matrix_0_0 = np.array([[0.5, 0], [0, 6]]) region_data_matrix_0_1 = np.array([[1, 10], [1, 0]]) region_data_matrix_1_0 = np.array([[0.5, 1.2], [0.29, 6]]) region_data_matrix_1_1 = np.array([[0.85, 1], [0.9, 6]]) susceptibles = [[5, 6], [7, 8]] dI = 4 contacts_0 = em.ContactMatrix(age_groups, contact_data_matrix_0) contacts_1 = em.ContactMatrix(age_groups, contact_data_matrix_1) regional_0_0 = em.RegionMatrix(regions[0], age_groups, region_data_matrix_0_0) regional_0_1 = em.RegionMatrix(regions[1], age_groups, region_data_matrix_0_1) regional_1_0 = em.RegionMatrix(regions[0], age_groups, region_data_matrix_1_0) regional_1_1 = em.RegionMatrix(regions[1], age_groups, region_data_matrix_1_1) # Matrices contact matrices_contact = [contacts_0, contacts_1] time_changes_contact = [1, 3] matrices_region = [[regional_0_0, regional_0_1], [regional_1_0, regional_1_1]] time_changes_region = [1, 2] model.set_regions(regions) model.read_contact_data(matrices_contact, time_changes_contact) model.read_regional_data(matrices_region, time_changes_region) initial_r = [0.5, 1] parameters = [ initial_r, 1, susceptibles, [[0, 0], [0, 0]], [[0.1, 0.2], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[1] * 2, [1] * 2], 4, dI, 0.5, 'my-solver' ] times = [1, 2] output = model.simulate(list(deepflatten(parameters, ignore=str)), times) tests = [[20, 30], [10, 0]] sens = 0.9 spec = 0.1 self.assertEqual( model.samples_positive_tests(output, tests[0], sens, spec, 0).shape, (len(age_groups), )) with self.assertRaises(TypeError): model.samples_positive_tests(output, tests[0], sens, spec, '1') with self.assertRaises(ValueError): model.samples_positive_tests(output, tests[0], sens, spec, -1) with self.assertRaises(ValueError): model.samples_positive_tests(output, tests[0], sens, spec, 3)
def test_check_positives_format(self): model = em.PheSEIRModel() # Populate the model regions = ['London', 'Cornwall'] age_groups = ['0-10', '10-25'] # Initial state of the system contact_data_matrix_0 = np.array([[1, 0], [0, 3]]) contact_data_matrix_1 = np.array([[10, 5.2], [0, 3]]) region_data_matrix_0_0 = np.array([[0.5, 0], [0, 6]]) region_data_matrix_0_1 = np.array([[1, 10], [1, 0]]) region_data_matrix_1_0 = np.array([[0.5, 1.2], [0.29, 6]]) region_data_matrix_1_1 = np.array([[0.85, 1], [0.9, 6]]) susceptibles = [[5, 6], [7, 8]] dI = 4 contacts_0 = em.ContactMatrix(age_groups, contact_data_matrix_0) contacts_1 = em.ContactMatrix(age_groups, contact_data_matrix_1) regional_0_0 = em.RegionMatrix(regions[0], age_groups, region_data_matrix_0_0) regional_0_1 = em.RegionMatrix(regions[1], age_groups, region_data_matrix_0_1) regional_1_0 = em.RegionMatrix(regions[0], age_groups, region_data_matrix_1_0) regional_1_1 = em.RegionMatrix(regions[1], age_groups, region_data_matrix_1_1) # Matrices contact matrices_contact = [contacts_0, contacts_1] time_changes_contact = [1, 3] matrices_region = [[regional_0_0, regional_0_1], [regional_1_0, regional_1_1]] time_changes_region = [1, 2] model.set_regions(regions) model.read_contact_data(matrices_contact, time_changes_contact) model.read_regional_data(matrices_region, time_changes_region) initial_r = [0.5, 1] parameters = [ initial_r, 1, susceptibles, [[0, 0], [0, 0]], [[0.1, 0.2], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[1] * 2, [1] * 2], 4, dI, 0.5, 'my-solver' ] times = [1, 2] output = model.simulate(list(deepflatten(parameters, ignore=str)), times) tests = [[20, 30], [10, 0]] sens = 0.9 spec = 0.1 with self.assertRaises(ValueError): output1 = np.array([5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) model.check_positives_format(output1, tests, sens, spec) with self.assertRaises(ValueError): output1 = np.array([[5, 6, 0, 0, 0, 0, 0, 0, 0, 0], [5, 6, 0, 0, 0, 0, 0, 0, 0, 0]]) model.check_positives_format(output1, tests, sens, spec) with self.assertRaises(ValueError): output1 = np.array([[5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]) model.check_positives_format(output1, tests, sens, spec) with self.assertRaises(TypeError): output1 = np.array([['5', 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5, 6, '0', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]) model.check_positives_format(output1, tests, sens, spec) with self.assertRaises(ValueError): tests1 = 100 model.check_positives_format(output, tests1, sens, spec) with self.assertRaises(ValueError): tests1 = np.array([2, 50]) model.check_positives_format(output, tests1, sens, spec) with self.assertRaises(ValueError): tests1 = np.array([[20, 30, 1], [10, 0, 0]]) model.check_positives_format(output, tests1, sens, spec) with self.assertRaises(TypeError): tests1 = np.array([[20, '30'], [10, 0]]) model.check_positives_format(output, tests1, sens, spec) with self.assertRaises(ValueError): tests1 = np.array([[-1, 50], [10, 0]]) model.check_positives_format(output, tests1, sens, spec) with self.assertRaises(TypeError): model.check_positives_format(output, tests, '0.9', spec) with self.assertRaises(ValueError): model.check_positives_format(output, tests, -0.2, spec) with self.assertRaises(ValueError): model.check_positives_format(output, tests, 1.2, spec) with self.assertRaises(TypeError): model.check_positives_format(output, tests, sens, '0.1') with self.assertRaises(ValueError): model.check_positives_format(output, tests, sens, -0.1) with self.assertRaises(ValueError): model.check_positives_format(output, tests, sens, 1.2)
def test_simulate(self): model = em.PheSEIRModel() # Populate the model regions = ['London', 'Cornwall'] age_groups = ['0-10', '10-25'] # Initial state of the system contact_data_matrix_0 = np.array([[1, 0], [0, 3]]) contact_data_matrix_1 = np.array([[10, 5.2], [0, 3]]) region_data_matrix_0_0 = np.array([[0.5, 0], [0, 6]]) region_data_matrix_0_1 = np.array([[1, 10], [1, 0]]) region_data_matrix_1_0 = np.array([[0.5, 1.2], [0.29, 6]]) region_data_matrix_1_1 = np.array([[0.85, 1], [0.9, 6]]) susceptibles = [[5, 6], [7, 8]] dI = 4 contacts_0 = em.ContactMatrix(age_groups, contact_data_matrix_0) contacts_1 = em.ContactMatrix(age_groups, contact_data_matrix_1) regional_0_0 = em.RegionMatrix(regions[0], age_groups, region_data_matrix_0_0) regional_0_1 = em.RegionMatrix(regions[1], age_groups, region_data_matrix_0_1) regional_1_0 = em.RegionMatrix(regions[0], age_groups, region_data_matrix_1_0) regional_1_1 = em.RegionMatrix(regions[1], age_groups, region_data_matrix_1_1) # Matrices contact matrices_contact = [contacts_0, contacts_1] time_changes_contact = [1, 3] matrices_region = [[regional_0_0, regional_0_1], [regional_1_0, regional_1_1]] time_changes_region = [1, 2] model.set_regions(regions) model.read_contact_data(matrices_contact, time_changes_contact) model.read_regional_data(matrices_region, time_changes_region) initial_r = [0.5, 1] parameters = [ initial_r, 2, susceptibles, [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[1] * 2, [1] * 2], 4, dI, 0.5, 'RK45' ] times = [1, 2] output_my_solver = model.simulate( list(deepflatten(parameters, ignore=str)), times) npt.assert_almost_equal( output_my_solver, np.array([[7, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [7, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), decimal=3) parameters[-1] = 'my-solver' output_scipy_solver = model.simulate( list(deepflatten(parameters, ignore=str)), times) npt.assert_almost_equal( output_scipy_solver, np.array([[7, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [7, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), decimal=3) parameters[-1] = 'my-solver' with self.assertRaises(TypeError): model.simulate(list(deepflatten(parameters, ignore=str)), '0') with self.assertRaises(TypeError): model.simulate(list(deepflatten(parameters, ignore=str)), ['1', 2]) with self.assertRaises(ValueError): model.simulate(list(deepflatten(parameters, ignore=str)), [0, 1]) with self.assertRaises(TypeError): model.simulate('parameters', times) with self.assertRaises(ValueError): model.simulate([0], times) with self.assertRaises(TypeError): parameters1 = [ initial_r, 0.5, susceptibles, [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[1] * 2, [1] * 2], 4, dI, 0.005, 'my-solver' ] model.simulate(list(deepflatten(parameters1, ignore=(str, float))), times) with self.assertRaises(ValueError): parameters1 = [ initial_r, 0, susceptibles, [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[1] * 2, [1] * 2], 4, dI, 0.005, 'my-solver' ] model.simulate(list(deepflatten(parameters1, ignore=str)), times) with self.assertRaises(ValueError): parameters1 = [ initial_r, 3, susceptibles, [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[1] * 2, [1] * 2], 4, dI, 0.005, 'my-solver' ] model.simulate(list(deepflatten(parameters1, ignore=str)), times) with self.assertRaises(ValueError): susceptibles1 = [5, 6] parameters1 = [ initial_r, 1, susceptibles1, [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[1] * 2, [1] * 2], 4, dI, 0.005, 'my-solver' ] model.simulate(list(deepflatten(parameters1, ignore=str)), times) with self.assertRaises(ValueError): parameters1 = [ initial_r, 1, susceptibles, [[0, 0], [0, 0]], [[0, 0], [0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[1] * 2, [1] * 2], 4, dI, 0.5, 'my-solver' ] model.simulate(list(deepflatten(parameters1, ignore=str)), times) with self.assertRaises(ValueError): parameters1 = [ initial_r, 1, susceptibles, [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0, 0], [0, 0, 0]], [[0, 0], [0, 0]], [[1] * 2, [1] * 2], 4, dI, 0.005, 'my-solver' ] model.simulate(list(deepflatten(parameters1, ignore=str)), times) with self.assertRaises(ValueError): parameters1 = [ initial_r, 1, susceptibles, [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[[1] * 2, [1] * 2], [[1] * 2, [1] * 2]], 4, dI, 0.005, 'my-solver' ] model.simulate(list(deepflatten(parameters1, ignore=str)), times) with self.assertRaises(ValueError): parameters1 = [ initial_r, 1, susceptibles, [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[1] * 2, [1] * 2, [1] * 2], 4, dI, 0.005, 'my-solver' ] model.simulate(list(deepflatten(parameters1, ignore=str)), times) with self.assertRaises(ValueError): parameters1 = [ initial_r, 1, susceptibles, [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[1] * 4, [1] * 4], 4, dI, 0.005, 'my-solver' ] model.simulate(list(deepflatten(parameters1, ignore=str)), times) with self.assertRaises(TypeError): parameters1 = [ initial_r, 1, susceptibles, [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[1] * 2, [1] * 2], '4', dI, 0.005, 'my-solver' ] model.simulate(list(deepflatten(parameters1, ignore=str)), times) with self.assertRaises(ValueError): parameters1 = [ initial_r, 1, susceptibles, [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[1] * 2, [1] * 2], -1, dI, 0.005, 'my-solver' ] model.simulate(list(deepflatten(parameters1, ignore=str)), times) with self.assertRaises(TypeError): parameters1 = [ initial_r, 1, susceptibles, [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[1] * 2, [1] * 2], 4, '4', 0.005, 'my-solver' ] model.simulate(list(deepflatten(parameters1, ignore=str)), times) with self.assertRaises(ValueError): parameters1 = [ initial_r, 1, susceptibles, [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[1] * 2, [1] * 2], 4, 0, 0.005, 'my-solver' ] model.simulate(list(deepflatten(parameters1, ignore=str)), times) with self.assertRaises(TypeError): parameters1 = [ initial_r, 1, susceptibles, [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[1] * 2, [1] * 2], 4, dI, '0.005', 'my-solver' ] model.simulate(list(deepflatten(parameters1, ignore=str)), times) with self.assertRaises(ValueError): parameters1 = [ initial_r, 1, susceptibles, [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[1] * 2, [1] * 2], 4, dI, 0, 'my-solver' ] model.simulate(list(deepflatten(parameters1, ignore=str)), times) with self.assertRaises(TypeError): parameters1 = [ initial_r, 1, susceptibles, [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[1] * 2, [1] * 2], 4, dI, 0.5, 3 ] model.simulate(list(deepflatten(parameters1, ignore=str)), times) with self.assertRaises(ValueError): parameters1 = [ initial_r, 1, susceptibles, [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[1] * 2, [1] * 2], 4, dI, 0.5, 'my-solver2' ] model.simulate(list(deepflatten(parameters1, ignore=str)), times)
def test_samples_deaths(self): model = em.PheSEIRModel() # Populate the model regions = ['London', 'Cornwall'] age_groups = ['0-10', '10-25'] # Initial state of the system contact_data_matrix_0 = np.array([[1, 0], [0, 3]]) contact_data_matrix_1 = np.array([[10, 5.2], [0, 3]]) region_data_matrix_0_0 = np.array([[0.5, 0], [0, 6]]) region_data_matrix_0_1 = np.array([[1, 10], [1, 0]]) region_data_matrix_1_0 = np.array([[0.5, 1.2], [0.29, 6]]) region_data_matrix_1_1 = np.array([[0.85, 1], [0.9, 6]]) susceptibles = [[5, 6], [7, 8]] dI = 4 contacts_0 = em.ContactMatrix(age_groups, contact_data_matrix_0) contacts_1 = em.ContactMatrix(age_groups, contact_data_matrix_1) regional_0_0 = em.RegionMatrix(regions[0], age_groups, region_data_matrix_0_0) regional_0_1 = em.RegionMatrix(regions[1], age_groups, region_data_matrix_0_1) regional_1_0 = em.RegionMatrix(regions[0], age_groups, region_data_matrix_1_0) regional_1_1 = em.RegionMatrix(regions[1], age_groups, region_data_matrix_1_1) # Matrices contact matrices_contact = [contacts_0, contacts_1] time_changes_contact = [1, 3] matrices_region = [[regional_0_0, regional_0_1], [regional_1_0, regional_1_1]] time_changes_region = [1, 2] model.set_regions(regions) model.read_contact_data(matrices_contact, time_changes_contact) model.read_regional_data(matrices_region, time_changes_region) initial_r = [0.5, 1] parameters = [ initial_r, 1, susceptibles, [[0, 0], [0, 0]], [[0.1, 0.2], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[1] * 60, [1] * 60], 4, dI, 0.5, 'my-solver' ] times = np.arange(1, 61).tolist() output = model.simulate(list(deepflatten(parameters, ignore=str)), times) new_infections = model.new_infections(output) fatality_ratio = [0.1, 0.5] td_mean = 15.0 td_var = 12.1**2 theta = td_var / td_mean k = td_mean / theta time_to_death = gamma(k, scale=theta).pdf(np.arange(1, 60)).tolist() self.assertEqual( model.samples_deaths(new_infections, fatality_ratio, time_to_death, 0.5, 41).shape, (len(age_groups), )) self.assertEqual( model.samples_deaths(new_infections, fatality_ratio, time_to_death, 0.5, 1).shape, (len(age_groups), )) with self.assertRaises(ValueError): model.samples_deaths(new_infections, fatality_ratio, time_to_death, 0.5, -1) with self.assertRaises(TypeError): model.samples_deaths(new_infections, fatality_ratio, time_to_death, 0.5, '1') with self.assertRaises(ValueError): model.samples_deaths(new_infections, fatality_ratio, time_to_death, 0.5, 62)
def test_set_age_groups(self): model = em.PheSEIRModel() age_groups = ['0-10', '10-20'] model.set_age_groups(age_groups) self.assertEqual(model.age_groups_names(), ['0-10', '10-20'])
def test_set_regions(self): model = em.PheSEIRModel() regions = ['London', 'Cornwall'] model.set_regions(regions) self.assertEqual(model.region_names(), ['London', 'Cornwall'])
def test_check_death_format(self): model = em.PheSEIRModel() # Populate the model regions = ['London', 'Cornwall'] age_groups = ['0-10', '10-25'] # Initial state of the system contact_data_matrix_0 = np.array([[1, 0], [0, 3]]) contact_data_matrix_1 = np.array([[10, 5.2], [0, 3]]) region_data_matrix_0_0 = np.array([[0.5, 0], [0, 6]]) region_data_matrix_0_1 = np.array([[1, 10], [1, 0]]) region_data_matrix_1_0 = np.array([[0.5, 1.2], [0.29, 6]]) region_data_matrix_1_1 = np.array([[0.85, 1], [0.9, 6]]) susceptibles = [[5, 6], [7, 8]] dI = 4 contacts_0 = em.ContactMatrix(age_groups, contact_data_matrix_0) contacts_1 = em.ContactMatrix(age_groups, contact_data_matrix_1) regional_0_0 = em.RegionMatrix(regions[0], age_groups, region_data_matrix_0_0) regional_0_1 = em.RegionMatrix(regions[1], age_groups, region_data_matrix_0_1) regional_1_0 = em.RegionMatrix(regions[0], age_groups, region_data_matrix_1_0) regional_1_1 = em.RegionMatrix(regions[1], age_groups, region_data_matrix_1_1) # Matrices contact matrices_contact = [contacts_0, contacts_1] time_changes_contact = [1, 3] matrices_region = [[regional_0_0, regional_0_1], [regional_1_0, regional_1_1]] time_changes_region = [1, 2] model.set_regions(regions) model.read_contact_data(matrices_contact, time_changes_contact) model.read_regional_data(matrices_region, time_changes_region) initial_r = [0.5, 1] parameters = [ initial_r, 1, susceptibles, [[0, 0], [0, 0]], [[0.1, 0.2], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[1] * 2, [1] * 2], 4, dI, 0.5, 'my-solver' ] times = [1, 2] output = model.simulate(list(deepflatten(parameters, ignore=str)), times) new_infections = model.new_infections(output) fatality_ratio = [0.1, 0.5] time_to_death = [0.5, 0.5] with self.assertRaises(TypeError): model.check_death_format(new_infections, fatality_ratio, time_to_death, '0.5') with self.assertRaises(ValueError): model.check_death_format(new_infections, fatality_ratio, time_to_death, -2) with self.assertRaises(ValueError): new_infections1 = \ np.array([5, 6]) model.check_death_format(new_infections1, fatality_ratio, time_to_death, 0.5) with self.assertRaises(ValueError): new_infections1 = np.array([[5, 6, 0, 0], [5, 6, 0, 0]]) model.check_death_format(new_infections1, fatality_ratio, time_to_death, 0.5) with self.assertRaises(ValueError): new_infections1 = np.array([[5, 6], [5, 6], [5, 6]]) model.check_death_format(new_infections1, fatality_ratio, time_to_death, 0.5) with self.assertRaises(TypeError): new_infections1 = np.array([['5', 6], [5, '0']]) model.check_death_format(new_infections1, fatality_ratio, time_to_death, 0.5) with self.assertRaises(ValueError): fatality_ratio1 = 0 model.check_death_format(new_infections, fatality_ratio1, time_to_death, 0.5) with self.assertRaises(ValueError): fatality_ratio1 = np.array([0.1, 0.5, 0.1]) model.check_death_format(new_infections, fatality_ratio1, time_to_death, 0.5) with self.assertRaises(TypeError): fatality_ratio1 = np.array([0.1, '0.5']) model.check_death_format(new_infections, fatality_ratio1, time_to_death, 0.5) with self.assertRaises(ValueError): fatality_ratio1 = np.array([-0.1, 0.5]) model.check_death_format(new_infections, fatality_ratio1, time_to_death, 0.5) with self.assertRaises(ValueError): fatality_ratio1 = np.array([0.1, 1.5]) model.check_death_format(new_infections, fatality_ratio1, time_to_death, 0.5) with self.assertRaises(ValueError): time_to_death1 = np.array([[0.5], [0.5]]) model.check_death_format(new_infections, fatality_ratio, time_to_death1, 0.5) with self.assertRaises(ValueError): time_to_death1 = np.array([0.5, 0.5, 0.15]) model.check_death_format(new_infections, fatality_ratio, time_to_death1, 0.5) with self.assertRaises(TypeError): time_to_death1 = np.array(['0.1', 0.5]) model.check_death_format(new_infections, fatality_ratio, time_to_death1, 0.5) with self.assertRaises(ValueError): time_to_death1 = np.array([-0.1, 0.5]) model.check_death_format(new_infections, fatality_ratio, time_to_death1, 0.5) with self.assertRaises(ValueError): time_to_death1 = np.array([0.5, 1.1]) model.check_death_format(new_infections, fatality_ratio, time_to_death1, 0.5)
def test_parameter_names(self): model = em.PheSEIRModel() self.assertEqual( model.parameter_names(), ['S0', 'E10', 'E20', 'I10', 'I20', 'R0', 'beta', 'kappa', 'gamma'])
def test_output_names(self): model = em.PheSEIRModel() self.assertEqual(model.output_names(), ['S', 'E1', 'E2', 'I1', 'I2', 'R', 'Incidence'])
def test_n_parameters(self): model = em.PheSEIRModel() self.assertEqual(model.n_parameters(), 9)
def test_new_infections(self): model = em.PheSEIRModel() # Populate the model regions = ['London', 'Cornwall'] age_groups = ['0-10', '10-25'] # Initial state of the system contact_data_matrix_0 = np.array([[1, 0], [0, 3]]) contact_data_matrix_1 = np.array([[10, 5.2], [0, 3]]) region_data_matrix_0_0 = np.array([[0.5, 0], [0, 6]]) region_data_matrix_0_1 = np.array([[1, 10], [1, 0]]) region_data_matrix_1_0 = np.array([[0.5, 1.2], [0.29, 6]]) region_data_matrix_1_1 = np.array([[0.85, 1], [0.9, 6]]) susceptibles = [[5, 6], [7, 8]] dI = 4 contacts_0 = em.ContactMatrix(age_groups, contact_data_matrix_0) contacts_1 = em.ContactMatrix(age_groups, contact_data_matrix_1) regional_0_0 = em.RegionMatrix(regions[0], age_groups, region_data_matrix_0_0) regional_0_1 = em.RegionMatrix(regions[1], age_groups, region_data_matrix_0_1) regional_1_0 = em.RegionMatrix(regions[0], age_groups, region_data_matrix_1_0) regional_1_1 = em.RegionMatrix(regions[1], age_groups, region_data_matrix_1_1) # Matrices contact matrices_contact = [contacts_0, contacts_1] time_changes_contact = [1, 3] matrices_region = [[regional_0_0, regional_0_1], [regional_1_0, regional_1_1]] time_changes_region = [1, 2] model.set_regions(regions) model.read_contact_data(matrices_contact, time_changes_contact) model.read_regional_data(matrices_region, time_changes_region) initial_r = [0.5, 1] parameters = [ initial_r, 1, susceptibles, [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], [[1] * 2, [1] * 2], 4, dI, 0.5, 'my-solver' ] times = [1, 2] output = model.simulate(list(deepflatten(parameters, ignore=str)), times) npt.assert_array_equal(model.new_infections(output), np.array([[0, 0], [0, 0]])) with self.assertRaises(ValueError): output1 = np.array([5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) model.new_infections(output1) with self.assertRaises(ValueError): output1 = np.array([[5, 6, 0, 0, 0, 0, 0, 0, 0, 0], [5, 6, 0, 0, 0, 0, 0, 0, 0, 0]]) model.new_infections(output1) with self.assertRaises(ValueError): output1 = np.array([[5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]) model.new_infections(output1) with self.assertRaises(TypeError): output1 = np.array([['5', 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5, 6, '0', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]) model.new_infections(output1)
def test_n_outputs(self): model = em.PheSEIRModel() self.assertEqual(model.n_outputs(), 7)