from numpy import genfromtxt from sklearn.cross_validation import train_test_split from sklearn import preprocessing import numpy as np import dateutil.parser import pdb import glob import cPickle as pickle import shelve import six import episodic_data from six.moves.urllib import request data = episodic_data.load_data("data.pkl", episode=10) data_dict = episodic_data.load_file_data("data_dict.pkl") supervised_y_data = episodic_data.make_supervised_data(data, data_dict) x_train, x_test, y_train, y_test = train_test_split(data, supervised_y_data, test_size=0.10, random_state=123) action_map = {0: "Hold", 1: "Buy", 2: "Sell"} #calling data_dict is data_dict[episodic_data.list_md5_string_value(list)] def get_intial_data(): data_dictionary = {} data_dictionary["input"] = len( x_train[0][0]) + 1 #here one is portfolio value data_dictionary["action"] = 3 #short, buy and hold data_dictionary["hidden_layer_1_size"] = 40
from numpy import genfromtxt from sklearn.cross_validation import train_test_split from sklearn import preprocessing import numpy as np import dateutil.parser import pdb import glob import cPickle as pickle import shelve import six import episodic_data from six.moves.urllib import request data = episodic_data.load_data("data.pkl",episode=10) data_dict = episodic_data.load_file_data("data_dict.pkl") supervised_y_data = episodic_data.make_supervised_data(data, data_dict) x_train, x_test, y_train, y_test = train_test_split(data, supervised_y_data, test_size=0.10, random_state=123) action_map = {0: "Hold", 1: "Buy", 2: "Sell"} #calling data_dict is data_dict[episodic_data.list_md5_string_value(list)] def get_intial_data(): data_dictionary = {} data_dictionary["input"] = len(x_train[0][0]) + 1 #here one is portfolio value data_dictionary["action"] = 3 #short, buy and hold data_dictionary["hidden_layer_1_size"] = 40 data_dictionary["hidden_layer_2_size"] = 20 #will be using later data_dictionary["x_train"] = x_train data_dictionary["x_test"] = x_test data_dictionary["y_test"] = y_test data_dictionary["y_train"] = y_train