def test_fail_1_to_1(self): code = """import numpy as np def ndvi_numpy(in_ar, out_ar, xoff, yoff, xsize, ysize, raster_xsize, raster_ysize, buf_radius, gt, **kwargs): out_ar[:] = in_ar[0]""" landsat = Landsat(self.metadata_set) scale_params = [[0, 40000], [0, 40000], [0, 40000]] pixel_function_details = FunctionDetails(name="ndvi_numpy", band_definitions=[Band.RED], code=code, arguments={"factor": DataType.UINT16.range_max}, data_type=DataType.UINT16) gdal.SetConfigOption('GDAL_VRT_ENABLE_PYTHON', "YES") nda = landsat.fetch_imagery_array([pixel_function_details, Band.GREEN, Band.BLUE], scale_params=scale_params, polygon_boundary_wkb=self.taos_shape.wkb, output_type=DataType.BYTE) nda2 = landsat.fetch_imagery_array([Band.RED, Band.GREEN, Band.BLUE], scale_params=scale_params, polygon_boundary_wkb=self.taos_shape.wkb, output_type=DataType.BYTE) self.assertIsNotNone(nda) np.testing.assert_almost_equal(nda, nda2) np.testing.assert_equal(nda, nda2)
def test_aws_without_google(self): metadata_service = MetadataService() # c1/L8/083/015/LC08_L1TP_083015_20171106_20171107_01_RT/ # c1/L8/083/111/LC08_L1GT_083111_20171106_20171107_01_RT sqs_message = { "Type": "Notification", "MessageId": "27f57c3d-9d2e-5fa3-8f83-2e41a3aa5634", "TopicArn": "arn:aws:sns:us-west-2:274514004127:NewSceneHTML", "Subject": "Amazon S3 Notification", "Message": "{\"Records\":[{\"eventVersion\":\"2.0\",\"eventSource\":\"aws:s3\",\"awsRegion\":\"us-west-2\",\"eventTime\":\"2017-11-07T23:05:40.162Z\",\"eventName\":\"ObjectCreated:Put\",\"userIdentity\":{\"principalId\":\"AWS:AIDAILHHXPNIKSGVUGOZK\"},\"requestParameters\":{\"sourceIPAddress\":\"35.193.238.175\"},\"responseElements\":{\"x-amz-request-id\":\"F96A6CC9816FC5EF\",\"x-amz-id-2\":\"yehs3XxTY8utc9kgKfNbMe1wdtV7F0wEMUXUQtIu7zMRtGvboxahzwncrmG046yI327j5IRh8nE=\"},\"s3\":{\"s3SchemaVersion\":\"1.0\",\"configurationId\":\"C1-NewHTML\",\"bucket\":{\"name\":\"landsat-pds\",\"ownerIdentity\":{\"principalId\":\"A3LZTVCZQ87CNW\"},\"arn\":\"arn:aws:s3:::landsat-pds\"},\"object\":{\"key\":\"c1/L8/115/062/LC08_L1TP_115062_20171107_20171107_01_RT/index.html\",\"size\":5391,\"eTag\":\"0f06667fca1f707894bf579bd667e221\",\"sequencer\":\"005A023C441A8F8403\"}}}]}", "Timestamp": "2017-11-07T23:05:40.219Z", "SignatureVersion": "1", "Signature": "bqrW1x6CgJntCz6f0F5uncyPZR+6ZM/tZ3OrRZDiudBv5DAtMyYR9n6KQ0aT+iYP5INfpL2GuIm8Uqco8ZHzg5AqEhHtNkpzGBQpQHvlF3t0ut9K27YNwJ6ZmnS14BgsLWyXIthVRjvHf1Hhx3ZInPMJrzTcKCOhOmBcM9zOpfWrHfnynuifpN3FaldDz6VY2d9QM0Rn8Fo8XZ4F+j01eAJVlydnRbSBbLewleuvhPQh6EG5r2EeekeniOIETrodS7o43ZClFr8OSgRE7BvpecVnnUEXBUIDDtRAPnIxo3Io0AmfPRI8xRfeKNhBIhPq3W3clm7Dxkp3N96OKoVUBw==", "SigningCertURL": "https://sns.us-west-2.amazonaws.com/SimpleNotificationService-433026a4050d206028891664da859041.pem", "UnsubscribeURL": "https://sns.us-west-2.amazonaws.com/?Action=Unsubscribe&SubscriptionArn=arn:aws:sns:us-west-2:274514004127:NewSceneHTML:7997d757-d1c6-4064-8935-34111968c8cc" } d = datetime.datetime.strptime(sqs_message['Timestamp'], "%Y-%m-%dT%H:%M:%S.%fZ") rows = metadata_service.search_aws('/imagery', wrs_path=115, wrs_row=62, collection_date=d) self.assertGreater(len(rows), 0) metadata = rows[0] self.assertIsNotNone(metadata) landsat = Landsat(metadata) nda = landsat.fetch_imagery_array([4, 3, 2], [[0, 40000], [0, 40000], [0, 40000]], spatial_resolution_m=240) self.assertIsNotNone(nda)
def test_australia(self): # 5th Place: Lake Eyre Landsat 5 Acquired August 5, 2006 wkt = "POLYGON((136.2469482421875 -27.57843813308233,138.6639404296875 -27.57843813308233," \ "138.6639404296875 -29.82351878748485,136.2469482421875 -29.82351878748485,136." \ "2469482421875 -27.57843813308233))" polygon = loads(wkt) # sql_filters = ['cloud_cover=0'] d_start = date(2006, 8, 4) d_end = date(2006, 8, 7) bounding_box = polygon.bounds landsat_filters = LandsatQueryFilters() landsat_filters.wrs_row.set_value(79) landsat_filters.acquired.set_range(d_start, True, d_end, True) landsat_filters.aoi.set_bounds(*bounding_box) rows = self.metadata_service.search( SpacecraftID.LANDSAT_5, data_filters=landsat_filters) rows = list(rows) self.assertEqual(len(rows), 1) metadata = rows[0] landsat = Landsat(metadata) # get a numpy.ndarray from bands for specified imagery band_numbers = [3, 2, 1] scale_params = [[0.0, 65535], [0.0, 65535], [0.0, 65535]] # nda = landsat.__get_ndarray(band_numbers, metadata, scale_params) nda = landsat.fetch_imagery_array(band_numbers, scale_params) self.assertEqual((3581, 4046, 3), nda.shape)
def test_polygon_wkb_metadata(self): d_start = date(2017, 3, 12) # 2017-03-12 d_end = date(2017, 3, 19) # 2017-03-20, epl api is inclusive self.metadata_service = MetadataService() landsat_filters = LandsatQueryFilters() landsat_filters.collection_number.set_value("PRE") landsat_filters.acquired.set_range(d_start, True, d_end, True) landsat_filters.aoi.set_geometry(self.taos_shape.wkb) # landsat_filters.geometry_bag.geometry_binaries.append(self.taos_shape.wkb) metadata_rows = self.metadata_service.search( SpacecraftID.LANDSAT_8, limit=10, data_filters=landsat_filters) metadata_set = [] for row in metadata_rows: metadata_set.append(row) landsat = Landsat(metadata_set) band_numbers = [Band.NIR, Band.SWIR1, Band.SWIR2] scaleParams = [[0.0, 40000.0], [0.0, 40000.0], [0.0, 40000.0]] nda = landsat.fetch_imagery_array( band_numbers, scaleParams, polygon_boundary_wkb=self.taos_shape.wkb) self.assertIsNotNone(nda) self.assertEqual((1804, 1295, 3), nda.shape)
def test_rastermetadata_cache(self): # GDAL helper functions for generating VRT landsat = Landsat(self.metadata_set) # get a numpy.ndarray from bands for specified imagery # 'nir', 'swir1', 'swir2' band_numbers = [Band.NIR, Band.SWIR1, Band.SWIR2] scaleParams = [[0.0, 40000.0], [0.0, 40000.0], [0.0, 40000.0]] nda = landsat.fetch_imagery_array( band_numbers, scaleParams, polygon_boundary_wkb=self.taos_shape.wkb, spatial_resolution_m=120) self.assertIsNotNone(nda) self.assertEqual((902, 648, 3), nda.shape) band_numbers = [Band.RED, Band.BLUE, Band.GREEN] nda = landsat.fetch_imagery_array( band_numbers, scaleParams, polygon_boundary_wkb=self.taos_shape.wkb, spatial_resolution_m=120) self.assertIsNotNone(nda) self.assertEqual((902, 648, 3), nda.shape) band_numbers = [Band.RED, Band.BLUE, Band.GREEN] nda = landsat.fetch_imagery_array(band_numbers, scaleParams, spatial_resolution_m=120) self.assertIsNotNone(nda) self.assertNotEqual((902, 648, 3), nda.shape)
def test_ndvi_taos(self): code = """import numpy as np def ndvi_numpy(in_ar, out_ar, xoff, yoff, xsize, ysize, raster_xsize, raster_ysize, buf_radius, gt, **kwargs): with np.errstate(divide = 'ignore', invalid = 'ignore'): factor = float(kwargs['factor']) output = np.divide((in_ar[1] - in_ar[0]), (in_ar[1] + in_ar[0])) output[np.isnan(output)] = 0.0 # shift range from -1.0-1.0 to 0.0-2.0 output += 1.0 # scale up from 0.0-2.0 to 0 to 255 by multiplying by 255/2 # https://stackoverflow.com/a/1735122/445372 output *= factor/2.0 # https://stackoverflow.com/a/10622758/445372 # in place type conversion out_ar[:] = output.astype(np.int16, copy=False)""" code2 = """import numpy as np def ndvi_numpy2(in_ar, out_ar, xoff, yoff, xsize, ysize, raster_xsize, raster_ysize, buf_radius, gt, **kwargs): with np.errstate(divide = 'ignore', invalid = 'ignore'): output = (in_ar[1] - in_ar[0]) / (in_ar[1] + in_ar[0]) output[np.isnan(output)] = 0.0 out_ar[:] = output""" landsat = Landsat(self.metadata_set) scale_params = [[0, DataType.UINT16.range_max, -1.0, 1.0]] pixel_function_details = FunctionDetails(name="ndvi_numpy", band_definitions=[Band.RED, Band.NIR], code=code, arguments={"factor": DataType.UINT16.range_max}, data_type=DataType.UINT16) gdal.SetConfigOption('GDAL_VRT_ENABLE_PYTHON', "YES") nda = landsat.fetch_imagery_array([pixel_function_details], scale_params=scale_params, polygon_boundary_wkb=self.taos_shape.wkb, output_type=DataType.FLOAT32) self.assertIsNotNone(nda) self.assertGreaterEqual(1.0, nda.max()) self.assertLessEqual(-1.0, nda.min()) pixel_function_details = FunctionDetails(name="ndvi_numpy2", band_definitions=[Band.RED, Band.NIR], code=code2, data_type=DataType.FLOAT32) nda2 = landsat.fetch_imagery_array([pixel_function_details], polygon_boundary_wkb=self.taos_shape.wkb, output_type=DataType.FLOAT32) self.assertIsNotNone(nda2) self.assertGreaterEqual(1.0, nda2.max()) self.assertLessEqual(-1.0, nda2.min())
def test_iowa_ndarray(self): d_start = date(2016, 4, 4) d_end = date(2016, 8, 7) bounding_box = self.iowa_polygon.bounds # sql_filters = ["cloud_cover<=15"] landsat_filters = LandsatQueryFilters() landsat_filters.cloud_cover.set_range(end=15, end_inclusive=15) landsat_filters.acquired.set_range(d_start, True, d_end, True) landsat_filters.aoi.set_bounds(*bounding_box) rows = self.metadata_service.search( SpacecraftID.LANDSAT_8, data_filters=landsat_filters) rows = list(rows) metadata = rows[0] landsat = Landsat(metadata) code = """import numpy as np def ndvi_numpy(in_ar, out_ar, xoff, yoff, xsize, ysize, raster_xsize, raster_ysize, buf_radius, gt, **kwargs): with np.errstate(divide = 'ignore', invalid = 'ignore'): out_ar[:] = np.divide((in_ar[1] - in_ar[0]), (in_ar[1] + in_ar[0])) out_ar[np.isnan(out_ar)] = 0.0 out_ar """ pixel_function_details = FunctionDetails(name="ndvi_numpy", band_definitions=[4, 5], code=code, data_type=DataType.FLOAT32) # pixel_function_details = { # "band_numbers": [4, 5], # "function_code": code, # "function_type": "ndvi_numpy", # "data_type": DataType.FLOAT32, # } band_definitions = [pixel_function_details, 4, 5] vrt = landsat.get_vrt(band_definitions) ds = gdal.Open(vrt) self.assertIsNotNone(ds) arr_4 = ds.GetRasterBand(2).ReadAsArray() arr_5 = ds.GetRasterBand(3).ReadAsArray() arr_ndvi = ds.GetRasterBand(1).ReadAsArray() del ds del landsat print(np.ndarray.max(arr_ndvi)) print(np.ndarray.min(arr_ndvi)) self.assertFalse(np.any(np.isinf(arr_ndvi))) self.assertIsNotNone(arr_ndvi) local_ndvi = self.ndvi_numpy(arr_5, arr_4) del arr_4 del arr_5 self.assertFalse(np.any(np.isinf(local_ndvi))) np.testing.assert_almost_equal(arr_ndvi, local_ndvi)
def test_vrt_extent(self): # GDAL helper functions for generating VRT landsat = Landsat(self.metadata_set[0]) # get a numpy.ndarray from bands for specified imagery band_numbers = [Band.RED, Band.GREEN, Band.BLUE] scale_params = [[0.0, 65535], [0.0, 65535], [0.0, 65535]] vrt = landsat.get_vrt(band_numbers, envelope_boundary=self.taos_shape.bounds) self.assertIsNotNone(vrt)
def test_one_band(self): # specify the bands that approximate real color landsat = Landsat(self.metadata_set) band_numbers = [Band.RED] scaleParams = [[0.0, 40000.0]] nda = landsat.fetch_imagery_array( band_numbers, scaleParams, polygon_boundary_wkb=self.taos_shape.wkb, spatial_resolution_m=120) self.assertIsNotNone(nda) self.assertEqual((902, 648), nda.shape)
def test_native_vs_custom(self): landsat = Landsat(self.metadata_set) gdal.SetConfigOption('GDAL_VRT_ENABLE_PYTHON', "YES") pixel_native = FunctionDetails(name="sqrt", band_definitions=[Band.RED], data_type=DataType.UINT16, transfer_type=DataType.FLOAT32) nda = landsat.fetch_imagery_array([pixel_native], polygon_boundary_wkb=self.taos_shape.wkb, output_type=DataType.FLOAT32) self.assertIsNotNone(nda)
def test_cutline(self): # GDAL helper functions for generating VRT landsat = Landsat(self.metadata_set[0]) # get a numpy.ndarray from bands for specified imagery band_numbers = [Band.RED, Band.GREEN, Band.BLUE] scale_params = [[0.0, 65535], [0.0, 65535], [0.0, 65535]] nda = landsat.fetch_imagery_array(band_numbers, scale_params, self.taos_shape.wkb, spatial_resolution_m=480) self.assertIsNotNone(nda)
def test_mosaic(self): # GDAL helper functions for generating VRT landsat = Landsat(self.metadata_set) # get a numpy.ndarray from bands for specified imagery band_numbers = [Band.RED, Band.GREEN, Band.BLUE] scale_params = [[0.0, 65535], [0.0, 65535], [0.0, 65535]] nda = landsat.fetch_imagery_array( band_numbers, scale_params, envelope_boundary=self.taos_shape.bounds) self.assertIsNotNone(nda) self.assertEqual((1804, 1295, 3), nda.shape)
def test_mosaic_cutline(self): # GDAL helper functions for generating VRT landsat = Landsat(self.metadata_set) # get a numpy.ndarray from bands for specified imagery # 'nir', 'swir1', 'swir2' band_numbers = [Band.NIR, Band.SWIR1, Band.SWIR2] scaleParams = [[0.0, 40000.0], [0.0, 40000.0], [0.0, 40000.0]] nda = landsat.fetch_imagery_array( band_numbers, scaleParams, polygon_boundary_wkb=self.taos_shape.wkb) self.assertIsNotNone(nda) self.assertEqual((1804, 1295, 3), nda.shape)
def test_pixel_function_vrt_1(self): utah_box = (-112.66342163085938, 37.738141282210385, -111.79824829101562, 38.44821130413263) d_start = date(2016, 7, 20) d_end = date(2016, 7, 28) landsat_filter = LandsatQueryFilters() landsat_filter.collection_number.set_value("PRE") landsat_filter.cloud_cover.set_range( end=5, end_inclusive=True ) #landsat_filter.cloud_cover.set_range_end(5, True) landsat_filter.acquired.set_range(d_start, True, d_end, True) landsat_filter.aoi.set_bounds(*utah_box) rows = self.metadata_service.search(SpacecraftID.LANDSAT_8, limit=10, data_filters=landsat_filter) rows = list(rows) self.assertEqual(0, len(rows)) d_end = date(2016, 8, 28) landsat_filter = LandsatQueryFilters() landsat_filter.collection_number.set_value("PRE") landsat_filter.cloud_cover.set_range( end=5, end_inclusive=False ) #landsat_filter.cloud_cover.set_range_end(5, False) landsat_filter.acquired.set_range( end=d_end, end_inclusive=True ) #landsat_filter.acquired.set_range_end(d_end, True) landsat_filter.acquired.sort_by(epl_imagery_pb2.DESCENDING) landsat_filter.aoi.set_bounds(*utah_box) rows = self.metadata_service.search(SpacecraftID.LANDSAT_8, limit=10, data_filters=landsat_filter) rows = list(rows) self.assertEqual(len(rows), 10) # metadata_row = ['LC80390332016208LGN00', '', 'LANDSAT_8', 'OLI_TIRS', '2016-07-26', # '2016-07-26T18:14:46.9465460Z', 'PRE', 'N/A', 'L1T', 39, 33, 1.69, # 39.96962, 37.81744, -115.27267, -112.56732, 1070517542, # 'gs://gcp-public-data-landsat/LC08/PRE/039/033/LC80390332016208LGN00'] metadata = rows[0] # GDAL helper functions for generating VRT landsat = Landsat([metadata]) # get a numpy.ndarray from bands for specified imagery band_numbers = [4, 3, 2] scale_params = [[0.0, 65535], [0.0, 65535], [0.0, 65535]] nda = landsat.fetch_imagery_array(band_numbers, scale_params) self.assertEqual(nda.shape, (3876, 3806, 3))
def test_vrt_with_alpha(self): landsat = Landsat(self.metadata_set) # get a numpy.ndarray from bands for specified imagery band_numbers = [Band.RED, Band.GREEN, Band.BLUE, Band.ALPHA] scaleParams = [[0.0, 40000], [0.0, 40000], [0.0, 40000]] nda = landsat.fetch_imagery_array( band_numbers, scaleParams, envelope_boundary=self.taos_shape.bounds, output_type=DataType.UINT16, spatial_resolution_m=120) self.assertIsNotNone(nda)
def test_pixel_ndvi(self): """ http://grindgis.com/blog/vegetation-indices-arcgis NDVI = (NIR - RED) / (NIR + RED) NDVI = (5 - 4) / (5 + 4) :return: """ landsat = Landsat(self.m_metadata) # , gsurl[2]) code = """import numpy as np def ndvi_numpy(in_ar, out_ar, xoff, yoff, xsize, ysize, raster_xsize, raster_ysize, buf_radius, gt, **kwargs): with np.errstate(divide = 'ignore', invalid = 'ignore'): output = np.divide((in_ar[1] - in_ar[0]), (in_ar[1] + in_ar[0])) output[np.isnan(output)] = 0.0 # shift range from -1.0-1.0 to 0.0-2.0 output += 1.0 # scale up from 0.0-2.0 to 0 to 255 by multiplying by 255/2 # https://stackoverflow.com/a/1735122/445372 output *= 65535/2.0 # https://stackoverflow.com/a/10622758/445372 # in place type conversion out_ar[:] = output.astype(np.int16, copy=False)""" pixel_function_details = FunctionDetails(name="ndvi_numpy", band_definitions=[4, 5], data_type=DataType.UINT16, code=code) vrt = landsat.get_vrt([pixel_function_details, 3, 2]) with open('ndvi_numpy.vrt', 'r') as myfile: data = myfile.read() expected = etree.XML(data) actual = etree.XML(vrt) result, message = xml_compare(expected, actual, {"GeoTransform": 1e-10}) self.assertTrue(result, message) gdal.SetConfigOption('GDAL_VRT_ENABLE_PYTHON', "YES") ds = gdal.Open(vrt) self.assertIsNotNone(ds) arr_ndvi = ds.GetRasterBand(1).ReadAsArray() ds = None self.assertIsNotNone(arr_ndvi) scale_params = [[0.0, 65535], [0.0, 65535], [0.0, 65535]] band_definitions = [pixel_function_details, 3, 2] nda = landsat.fetch_imagery_array(band_definitions, scale_params) self.assertIsNotNone(nda)
def test_get_file(self): d_start = date(2015, 6, 24) d_end = date(2016, 6, 24) bounding_box = (-115.927734375, 34.52466147177172, -78.31054687499999, 44.84029065139799) landsat_filters = LandsatQueryFilters() landsat_filters.acquired.set_range(d_start, True, d_end, True) landsat_filters.aoi.set_bounds(*bounding_box) metadata_service = MetadataService() rows = metadata_service.search(SpacecraftID.LANDSAT_8, data_filters=landsat_filters, limit=1) rows = list(rows) metadata = rows[0] landsat = Landsat(metadata) self.assertIsNotNone(landsat) vrt = landsat.get_vrt([4, 3, 2]) self.assertIsNotNone(vrt) dataset = landsat.get_dataset([4, 3, 2], DataType.UINT16) self.assertIsNotNone(dataset)
def test_metadata_extent(self): r = requests.get("https://raw.githubusercontent.com/johan/world.geo.json/master/countries/USA/NM/Taos.geo.json") taos_geom = r.json() print(taos_geom) taos_shape = shapely.geometry.shape(taos_geom['features'][0]['geometry']) metadata_service = MetadataService() # sql_filters = ['scene_id="LC80330342017072LGN00"', 'collection_number="PRE"'] landsat_filters = LandsatQueryFilters() landsat_filters.scene_id.set_value("LC80330342017072LGN00") landsat_filters.collection_number.set_value("PRE") rows = metadata_service.search( SpacecraftID.LANDSAT_8, data_filters=landsat_filters) rows = list(rows) self.assertEqual(len(rows), 1) metadata = rows[0] # GDAL helper functions for generating VRT landsat = Landsat(metadata) # get a numpy.ndarray from bands for specified imagery band_numbers = [Band.RED, Band.GREEN, Band.BLUE] scale_params = [[0.0, 65535], [0.0, 65535], [0.0, 65535]] vrt = landsat.get_vrt(band_numbers, envelope_boundary=taos_shape.bounds) with open('clipped_LC80330342017072LGN00.vrt', 'r') as myfile: data = myfile.read() expected = etree.XML(data) actual = etree.XML(vrt) result, message = xml_compare(expected, actual, {"GeoTransform": 1e-10, "xOff": 1e-10, "yOff": 1e-10}) self.assertTrue(result, message) dataset = gdal.Open(vrt) geo_transform = dataset.GetGeoTransform() # self.assertEqual(geo_transform, raster_metadata.get_geotransform(taos_shape.bounds)) # self.assertNotEqual(geo_transform, raster_metadata.get_geotransform()) """
def test_datatypes(self): landsat = Landsat(self.metadata_set) # get a numpy.ndarray from bands for specified imagery band_numbers = [Band.RED, Band.GREEN, Band.BLUE] scaleParams = [[0.0, 40000], [0.0, 40000], [0.0, 40000]] for data_type in DataType: if data_type is DataType.UNKNOWN_GDAL: continue nda = landsat.fetch_imagery_array( band_numbers, scaleParams, envelope_boundary=self.taos_shape.bounds, output_type=data_type, spatial_resolution_m=240) self.assertIsNotNone(nda) self.assertGreaterEqual(data_type.range_max, nda.max()) self.assertLessEqual(data_type.range_min, nda.min())
def test_unmount_destructor_conflict(self): wkt = "POLYGON((136.2469482421875 -27.57843813308233,138.6639404296875 -27.57843813308233," \ "138.6639404296875 -29.82351878748485,136.2469482421875 -29.82351878748485,136." \ "2469482421875 -27.57843813308233))" polygon = loads(wkt) # sql_filters = ['cloud_cover=0'] d_start = date(2006, 8, 4) d_end = date(2006, 8, 7) bounding_box = polygon.bounds # sql_filters = ['wrs_row=79'] landsat_filters = LandsatQueryFilters() landsat_filters.wrs_row.set_value(79) landsat_filters.acquired.set_range(d_start, True, d_end, True) landsat_filters.aoi.set_bounds(*bounding_box) rows = self.metadata_service.search( SpacecraftID.LANDSAT_5, data_filters=landsat_filters) rows = list(rows) metadata = rows[0] landsat = Landsat(metadata) vrt = landsat.get_vrt([4]) storage = Storage("gcp-public-data-landsat") landsat_2 = Landsat(metadata) vrt = landsat_2.get_vrt([4]) del landsat self.assertTrue(storage.is_mounted(metadata))
def test_vrt_not_pre(self): d_start = date(2017, 6, 24) d_end = date(2017, 9, 24) bounding_box = (-115.927734375, 34.52466147177172, -78.31054687499999, 44.84029065139799) # sql_filters = ['collection_number!="PRE"'] landsat_filter = LandsatQueryFilters() landsat_filter.collection_number.set_exclude_value("PRE") landsat_filter.acquired.set_range(d_start, True, d_end, True) landsat_filter.aoi.set_bounds(*bounding_box) rows = self.metadata_service.search(SpacecraftID.LANDSAT_8, limit=1, data_filters=landsat_filter) rows = list(rows) metadata = rows[0] landsat = Landsat(metadata) self.assertIsNotNone(landsat) vrt = landsat.get_vrt([4, 3, 2]) self.assertIsNotNone(vrt) dataset = landsat.get_dataset([4, 3, 2], DataType.UINT16) self.assertIsNotNone(dataset)
def test_band_enum(self): self.assertTrue(True) d_start = date(2016, 7, 20) d_end = date(2016, 7, 28) landsat_filter = LandsatQueryFilters() landsat_filter.scene_id.set_value("LC80390332016208LGN00") landsat_filter.acquired.set_range(d_start, True, d_end, True) rows = self.metadata_service.search(SpacecraftID.LANDSAT_8, limit=1, data_filters=landsat_filter) rows = list(rows) metadata = rows[0] landsat = Landsat(metadata) scale_params = [[0.0, 65535], [0.0, 65535], [0.0, 65535]] # nda = landsat.__get_ndarray(band_numbers, metadata, scale_params) nda = landsat.fetch_imagery_array([Band.RED, Band.GREEN, Band.BLUE], scale_params, spatial_resolution_m=240) self.assertIsNotNone(nda) nda2 = landsat.fetch_imagery_array([4, 3, 2], scale_params, spatial_resolution_m=240) np.testing.assert_almost_equal(nda, nda2)
def test_pixel_1(self): metadata = self.m_metadata landsat = Landsat(metadata) # , gsurl[2]) code = """import numpy as np def multiply_rounded(in_ar, out_ar, xoff, yoff, xsize, ysize, raster_xsize, raster_ysize, buf_radius, gt, **kwargs): factor = float(kwargs['factor']) out_ar[:] = np.round_(np.clip(in_ar[0] * factor,0,255))""" function_arguments = {"factor": "1.5"} pixel_function_details = FunctionDetails(name="multiply_rounded", band_definitions=[2], data_type=DataType.FLOAT32, code=code, arguments=function_arguments) vrt = landsat.get_vrt([pixel_function_details, 3, 2]) with open('pixel_1.vrt', 'r') as myfile: data = myfile.read() expected = etree.XML(data) actual = etree.XML(vrt) result, message = xml_compare(expected, actual, {"GeoTransform": 1e-10}) self.assertTrue(result, message)
def test_landsat5_vrt(self): # 5th Place: Lake Eyre Landsat 5 Acquired August 5, 2006 wkt = "POLYGON((136.2469482421875 -27.57843813308233,138.6639404296875 -27.57843813308233," \ "138.6639404296875 -29.82351878748485,136.2469482421875 -29.82351878748485,136." \ "2469482421875 -27.57843813308233))" polygon = loads(wkt) # sql_filters = ['cloud_cover=0'] d_start = date(2006, 8, 4) d_end = date(2006, 8, 5) bounding_box = polygon.bounds landsat_filters = LandsatQueryFilters() landsat_filters.wrs_row.set_value(79) landsat_filters.acquired.set_range(d_start, True, d_end, True) landsat_filters.aoi.set_bounds(*bounding_box) rows = self.metadata_service.search( SpacecraftID.LANDSAT_5, data_filters=landsat_filters) rows = list(rows) self.assertEqual(len(rows), 1) # data structure that contains all fields from Google's Landsat BigQuery Database metadata = rows[0] # GDAL helper functions for generating VRT landsat = Landsat(metadata) vrt = landsat.get_vrt([3, 2, 1]) with open('testlandsat5.vrt', 'r') as myfile: data = myfile.read() expected = etree.XML(data) actual = etree.XML(vrt) result, message = xml_compare(expected, actual, {"GeoTransform": 1e-10}) self.assertTrue(result, message)
def test_vrt(self): d_start = date(2015, 6, 24) d_end = date(2016, 6, 24) bounding_box = (-115.927734375, 34.52466147177172, -78.31054687499999, 44.84029065139799) # sql_filters = ['scene_id="LC80400312016103LGN00"'] landsat_filters = LandsatQueryFilters() landsat_filters.scene_id.set_value("LC80400312016103LGN00") landsat_filters.acquired.set_range(d_start, True, d_end, True) landsat_filters.aoi.set_bounds(*bounding_box) rows = self.metadata_service.search(SpacecraftID.LANDSAT_8, limit=1, data_filters=landsat_filters) rows = list(rows) metadata = rows[0] landsat = Landsat(metadata) vrt = landsat.get_vrt([4, 3, 2]) with open('test_1.vrt', 'r') as myfile: data = myfile.read() expected = etree.XML(data) actual = etree.XML(vrt) result, message = xml_compare(expected, actual) self.assertTrue(result, message) dataset = gdal.Open(vrt) self.assertIsNotNone(dataset) ds_band_1 = dataset.GetRasterBand(1) self.assertIsNotNone(ds_band_1) self.assertEqual(ds_band_1.XSize, 7631) ds_band_2 = dataset.GetRasterBand(2) self.assertIsNotNone(ds_band_2) self.assertEqual(ds_band_2.YSize, 7771) ds_band_3 = dataset.GetRasterBand(3) self.assertIsNotNone(ds_band_3) self.assertEqual(ds_band_3.YSize, 7771)
def test_iowa_scaled(self): d_start = date(2016, 4, 4) d_end = date(2016, 8, 7) bounding_box = self.iowa_polygon.bounds # sql_filters = ["cloud_cover<=15"] landsat_filters = LandsatQueryFilters() landsat_filters.cloud_cover.set_range(end=15, end_inclusive=True) landsat_filters.acquired.set_range(d_start, True, d_end, True) landsat_filters.aoi.set_bounds(*bounding_box) rows = self.metadata_service.search( SpacecraftID.LANDSAT_8, data_filters=landsat_filters) rows = list(rows) metadata = rows[0] landsat = Landsat(metadata) code = """import numpy as np def ndvi_numpy(in_ar, out_ar, xoff, yoff, xsize, ysize, raster_xsize, raster_ysize, buf_radius, gt, **kwargs): with np.errstate(divide = 'ignore', invalid = 'ignore'): factor = float(kwargs['factor']) out_ar[:] = np.divide((in_ar[1] - in_ar[0]), (in_ar[1] + in_ar[0])) out_ar[np.isnan(out_ar)] = 0.0 # shift range from -1.0-1.0 to 0.0-2.0 out_ar += 1.0 # scale up from 0.0-2.0 to 0 to 255 by multiplying by 255/2 out_ar *= factor/2.0""" # pixel_function_details = { # "function_arguments": {"factor": 255}, # "band_numbers": [4, Band.NIR], # "function_code": code, # "function_type": "ndvi_numpy", # "data_type": DataType.FLOAT32, # } pixel_function_details = FunctionDetails(name="ndvi_numpy", band_definitions=[4, Band.NIR], code=code, arguments={"factor": 255}, data_type=DataType.FLOAT32) band_definitions = [pixel_function_details, Band.RED, 5] vrt = landsat.get_vrt(band_definitions) ds = gdal.Open(vrt) self.assertIsNotNone(ds) arr_4 = ds.GetRasterBand(2).ReadAsArray() arr_5 = ds.GetRasterBand(3).ReadAsArray() arr_ndvi = ds.GetRasterBand(1).ReadAsArray() del ds del landsat print(np.ndarray.max(arr_ndvi)) # print(np.ndarray.min(arr_ndvi)) # self.assertFalse(np.any(np.isinf(arr_ndvi))) self.assertIsNotNone(arr_ndvi) local_ndvi = self.ndvi_numpy(arr_5, arr_4) del arr_4 del arr_5 local_ndvi += 1.0 local_ndvi *= float(pixel_function_details.arguments['factor']) / 2.0 self.assertFalse(np.any(np.isinf(local_ndvi))) np.floor(arr_ndvi, out=arr_ndvi) np.floor(local_ndvi, out=local_ndvi) np.testing.assert_almost_equal(arr_ndvi, local_ndvi, decimal=0)