Exemple #1
0
# %% Configuration
# ================

GRAPH = 'er'
TAUS = np.concatenate([[0.001],
                       np.arange(0.01, 0.3, step=0.05),
                       np.arange(0.3, 3.01, step=0.1)])
DISTANCE = 25

# %% Run the required simulations
# ===============================

graph = load_graph(GRAPH)

out = data_path(f'MFPT/{GRAPH}_UndirectedNetwork_ExponentialWalker')
if not out.exists():
    network = UndirectedNetwork(graph)
    walker = ExponentialWalker(timescale=0.1)
    sim = MFPTSimulation(network, walker, num_sims=5000)
    results = sim.run()
    results.to_csv(str(out))

for tau in TAUS:
    out = data_path(
        f'MFPT/{GRAPH}_SwitchingNetwork_ExponentialWalker_tau{tau:e}')
    if out.exists():
        continue

    print(f'Running simulation: {out}')
    network = SwitchingNetwork(graph, timescale=tau, memory=False)
Exemple #2
0
# %% Configuration
# ================

GRAPH = 'hex'
TAU = 3.
NUM_TRAJS = 10000
MAX_TIME = 200

# %% Run the required simulations
# ===============================

graph = load_graph(GRAPH)

# Undirected network
out = data_path(
    f'trajs/{GRAPH}_UndirectedNetwork_ExponentialWalker_N{NUM_TRAJS}_max_time{MAX_TIME}',
    suffix='.parquet')
if not out.exists():
    print(f'Generating trajectories: {out}')
    network = UndirectedNetwork(graph)
    walker = ExponentialWalker(timescale=0.1)
    generator = TrajectoryGenerator(network, walker)
    trajs = generator.trajectories(NUM_TRAJS, MAX_TIME)
    trajs.to_parquet(str(out))

# Active network
out = data_path(
    f'trajs/{GRAPH}_SwitchingNetwork_ExponentialWalker_tau{TAU:e}_N{NUM_TRAJS}_max_time{MAX_TIME}',
    suffix='.parquet')
if not out.exists():
    print(f'Generating trajectories: {out}')
Exemple #3
0
# %% Configuration
# ================

GRAPH = 'hex'
TAUS = np.concatenate([[0.001],
                       np.arange(0.01, 0.075, step=0.005),
                       np.arange(0.75, 0.3, step=0.01),
                       np.arange(0.3, 2.3, step=0.1)])
DISTANCE = 25

# %% Run the required simulations
# ===============================

graph = load_graph(GRAPH)

out = data_path(f'MFPT/{GRAPH}_UndirectedNetwork_ExponentialWalker')
if not out.exists():
    network = UndirectedNetwork(graph)
    walker = ExponentialWalker(timescale=0.1)
    sim = MFPTSimulation(network, walker, num_sims=5000)
    results = sim.run()
    results.to_csv(str(out))

for tau in TAUS:
    out = data_path(
        f'MFPT/{GRAPH}_SwitchingNetworkConstantRate_ExponentialWalker_tau{tau:e}_sim1000'
    )
    if out.exists():
        continue

    print(f'Running simulation: {out}')
Exemple #4
0

# %% Configuration
# ================

TAU = 0.03
VMAX = 3000
GRAPH = "er"


# %% Run required simulations
# ===========================

graph = load_graph(GRAPH)

out = data_path(f'MFPT/{GRAPH}_SwitchingNetwork_ExponentialWalker_tau{TAU:e}')
if not out.exists():
    network = SwitchingNetwork(graph, timescale=TAU, memory=False)
    walker = ExponentialWalker(timescale=0.1)
    sim = MFPTSimulation(network, walker, num_sims=5000)
    print(f'Running simulation: {out}')
    res = sim.run()
    res.to_csv(str(out))


# %% MFPT heatmap
# ===============

data = load_data(f'MFPT/{GRAPH}_SwitchingNetwork_ExponentialWalker_tau{TAU:e}')
# data = load_data(f'MFPT/{GRAPH}_UndirectedNetwork_ExponentialWalker')
# %% Configuration

GRAPH = 'hex'
TAU = 1e9  # “frozen” active network
MAX_TIME = 60
NUM_RUNS = 10  # number of independent simulations to run

# %% Run the required simulations
# ===============================

graph = load_graph(GRAPH)

for n_run in range(1, NUM_RUNS + 1):
    out = data_path(
        f'trajs/{GRAPH}_SwitchingNetwork_ExponentialWalker_tau{TAU:e}_uniform_10_max_time{MAX_TIME}_run{n_run}',
        suffix='.parquet')
    if out.exists():
        continue

    print(f'Generating trajectories: {out}')
    # Start from uniform distribution, 10 particles per node.
    network = SwitchingNetwork(graph, timescale=TAU)
    walker = ExponentialWalker(timescale=0.1)
    num_walkers = 10 * network.graph.number_of_nodes()
    start_nodes = np.repeat(list(network.graph.nodes), 10)
    generator = TrajectoryGenerator(network, walker)
    trajs = generator.trajectories(num_walkers,
                                   MAX_TIME,
                                   start_nodes=start_nodes)
    trajs.to_parquet(str(out))
Exemple #6
0
TAUS = [0.03, 0.3, 3]
N = 10000
MAX_TIME = 120

GRAPH = 'hex'
TARGET = 146

# %% Run the required simulations
# ===============================

graph = load_graph(GRAPH)

for tau in TAUS:
    out = data_path(
        f'trajs/{GRAPH}_SwitchingNetwork_ExponentialWalker_tau{tau:e}_N{N}_max_time{MAX_TIME}',
        suffix='.parquet')
    if out.exists():
        continue

    print(f'Generating trajectories: {out}')
    network = SwitchingNetwork(graph, timescale=tau)
    walker = ExponentialWalker(timescale=0.1)
    generator = TrajectoryGenerator(network, walker)
    trajs = generator.trajectories(N, MAX_TIME)
    trajs.to_parquet(str(out))

# %% Generate the figures
# =======================

for tau in TAUS:
GRAPH = 'hex'
NUM_TRAJS = 1000
TARGET = 146
TAUS = [0.03, 0.3, 3.]
NUM_SIMS = 1000

# %% Run required simulations
# ===========================

graph = load_graph(GRAPH)
distance = nx.shortest_path_length(graph, 0, TARGET)

for tau in TAUS:
    out = data_path(
        f'trajs/{GRAPH}_SwitchingNetwork_ExponentialWalker_tau{tau:e}_N{NUM_TRAJS}_1st_trajectories_S0_T{TARGET}',
        suffix='.parquet')
    if out.exists():
        continue

    print(f'Generating trajectories: {out}')

    network = SwitchingNetwork(graph, timescale=tau)
    walker = ExponentialWalker(timescale=0.1)

    # We generate simulations with NUM_TRAJS particles and keep only the first
    # to arrive. We repeat this NUM_SIMS times to obtain the statistics of the
    # first particle to arrive.
    trajs = []
    for sim_id in trange(NUM_SIMS):
        network.reset()