Exemple #1
0
def get_prime_list_true_prime(max_num):

    # need to be at least 2
    assert(max_num >= 1)

    init_list = []

    for i in range(2, max_num + 1):
        init_list.append(i)

    # print init_list

    j = 0
    new_list = init_list
    new_list_len = len(new_list)

    sqrt_of_max_num = int(math.sqrt(max_num))

    while(1):
        checkNum = new_list[j]

        # show the progress of each iteration
        # print 'j = %5d checkNum %5d, new_list_len %5d'%(j, checkNum, new_list_len)

        # we only need to sieve up to sqrt(max_num)
        if (checkNum > sqrt_of_max_num):
            break

        new_list = erato_siev_one_round(new_list, checkNum)
        # print new_list
        j = j+1

        new_list_len = len(new_list)
        if(new_list_len <= j):
            break

    print 'number of primes: %d'%(new_list_len)
    # print 'prime list:', new_list

    return new_list
Exemple #2
0
def get_num_count_in_M_set_not_divisible_by_prime_less_than_xi(M_set, xi):

    # need to be at least 2
    target_num = len(M_set)
    assert target_num >= 1

    prime_list = get_prime_list(xi)

    init_list = deepcopy(M_set)
    # print init_list

    j = 0

    # construct initial list. Initial list may include [1] at beginning, we skip it.
    if init_list[0] == 1:
        new_list = init_list[1:]
    else:
        new_list = init_list

    while 1:
        checkNum = prime_list[j]

        # show the progress of each iteration
        # print 'j = %5d checkNum %5d, new_list_len %5d'%(j, checkNum, new_list_len)

        new_list = erato_siev_one_round(new_list, checkNum)
        # print new_list
        j = j + 1

        if j == len(prime_list):
            break

    sift_left_cnt = len(new_list)

    print "number not_divisible_by_prime_less_than_xi: %d \n" % (sift_left_cnt)
    # print 'number not_divisible_by_prime_less_than_xi:', new_list, '\n'

    return sift_left_cnt