def map_compute_distance(args):
    if len(args) == 4:
        dist_matrix, dicts, mode, ctgy_chkin_dict = args
        queue = None
    else:
        dist_matrix, queue, dicts, mode, ctgy_chkin_dict = args
    inner_dist = list()
    outer_dist = list()
    for i, dist in enumerate(dist_matrix):
        if mode == 'sub':
            same_ctgy_chkins = ctgy_chkin_dict[dicts.chkin_ctgy_dict[
                dicts.reverse_dictionary[i]]]
        else:
            same_ctgy_chkins = ctgy_chkin_dict[
                dicts.ctgy_mapping['subctgy_ctgy_dict'][correct_errata(
                    dicts.chkin_ctgy_dict[dicts.reverse_dictionary[i]])]]
        ids = [
            dicts.dictionary[key] for key in same_ctgy_chkins
            if key in dicts.dictionary.keys()
        ]
        same_ctgy_mask = np.ones(dist_matrix.shape[1]).astype(int)
        same_ctgy_mask[ids] = 0
        diff_ctgy_mask = np.logical_not(same_ctgy_mask)
        same_dists = ma.masked_array(dist, mask=same_ctgy_mask)
        diff_dists = ma.masked_array(dist, mask=diff_ctgy_mask)
        inner_dist.append(np.mean(same_dists))
        outer_dist.append(np.mean(diff_dists))
    if not queue is None:
        queue.put((inner_dist, outer_dist))
    else:
        return inner_dist, outer_dist
Exemple #2
0
def get_labels(dicts):
    subctgys = sorted(dicts.ctgy_chkin_dict.keys())
    subctgy_dictionary = {k:i for i, k in enumerate(subctgys)}
    sublabels = [subctgy_dictionary[dicts.chkin_ctgy_dict[dicts.reverse_dictionary[i]]] for i in range(dicts.vocabulary_size-1)]
    rootctgys = sorted(dicts.rootctgy_chkin_dict.keys())
    rootctgy_dictionary = {k:i for i, k in enumerate(rootctgys)}
    rootlabels = [rootctgy_dictionary[dicts.ctgy_mapping['subctgy_ctgy_dict'][correct_errata(dicts.chkin_ctgy_dict[dicts.reverse_dictionary[i]])]] for i in range(dicts.vocabulary_size-1)]
    return {'sub':sublabels, 'root':rootlabels}
Exemple #3
0
def get_same_ctgy_chkins(i, dicts, mode):
    if mode == 'root':
        ctgy_chkin_dict = dicts.rootctgy_chkin_dict
        same_ctgy_chkins = ctgy_chkin_dict[dicts.ctgy_mapping['subctgy_ctgy_dict'][
            correct_errata(dicts.chkin_ctgy_dict[dicts.reverse_dictionary[i]])  ]]
    else:
        ctgy_chkin_dict = dicts.ctgy_chkin_dict
        same_ctgy_chkins = ctgy_chkin_dict[dicts.chkin_ctgy_dict[dicts.reverse_dictionary[i]]]
    return same_ctgy_chkins
Exemple #4
0
def get_ctgy_histogram_dict(traj_list, dicts):
    timebins = list(range(24))
    substats = {k:np.zeros_like(timebins) for k in dicts.ctgy_chkin_dict}
    rootstats = {k:np.zeros_like(timebins) for k in dicts.ctgy_mapping['ctgy_subctgy_dict']}

    for seq in traj_list:
        for p in seq:
            poi = p[0]
            if dicts.reverse_dictionary[poi] == 'UNK':
                continue
            sctgy = dicts.chkin_ctgy_dict[dicts.reverse_dictionary[poi]]
            rctgy = dicts.ctgy_mapping['subctgy_ctgy_dict'][correct_errata(sctgy)]
            visit_time = p[-1].hour
            substats[sctgy][visit_time] += 1
            rootstats[rctgy][visit_time] += 1
    return substats, rootstats
Exemple #5
0
def get_rootctgy_chkin(ctgy_chkin_dict, subctgy_ctgy_dict):
    newdict = defaultdict(list)
    for key in ctgy_chkin_dict:
        newdict[subctgy_ctgy_dict[correct_errata(key)]].extend(
            ctgy_chkin_dict[key])
    return newdict
Exemple #6
0
 def id2rootctgy(dicts, ctgy_mapping, idx):
     return ctgy_mapping['subctgy_ctgy_dict'][correct_errata(dicts.chkin_ctgy_dict[dicts.reverse_dictionary[idx]])]