def testCountErrors(self): """Tests that the error counter works as expected. """ truth_str = 'farm barn' counts = ec.CountErrors(ocr_text=truth_str, truth_text=truth_str) self.assertEqual( counts, ec.ErrorCounts(fn=0, fp=0, truth_count=9, test_count=9)) # With a period on the end, we get a char error. dot_str = 'farm barn.' counts = ec.CountErrors(ocr_text=dot_str, truth_text=truth_str) self.assertEqual( counts, ec.ErrorCounts(fn=0, fp=1, truth_count=9, test_count=10)) counts = ec.CountErrors(ocr_text=truth_str, truth_text=dot_str) self.assertEqual( counts, ec.ErrorCounts(fn=1, fp=0, truth_count=10, test_count=9)) # Space is just another char. no_space = 'farmbarn' counts = ec.CountErrors(ocr_text=no_space, truth_text=truth_str) self.assertEqual( counts, ec.ErrorCounts(fn=1, fp=0, truth_count=9, test_count=8)) counts = ec.CountErrors(ocr_text=truth_str, truth_text=no_space) self.assertEqual( counts, ec.ErrorCounts(fn=0, fp=1, truth_count=8, test_count=9)) # Lose them all. counts = ec.CountErrors(ocr_text='', truth_text=truth_str) self.assertEqual( counts, ec.ErrorCounts(fn=9, fp=0, truth_count=9, test_count=0)) counts = ec.CountErrors(ocr_text=truth_str, truth_text='') self.assertEqual( counts, ec.ErrorCounts(fn=0, fp=9, truth_count=0, test_count=9))
def SoftmaxEval(self, sess, model, num_steps): """Evaluate a model in softmax mode. Adds char, word recall and sequence error rate events to the sw summary writer, and returns them as well TODO(rays) Add LogisticEval. Args: sess: A tensor flow Session. model: The model to run in the session. Requires a VGSLImageModel or any other class that has a using_ctc attribute and a RunAStep(sess) method that reurns a softmax result with corresponding labels. num_steps: Number of steps to evaluate for. Returns: ErrorRates named tuple. Raises: ValueError: If an unsupported number of dimensions is used. """ coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) # Run the requested number of evaluation steps, gathering the outputs of the # softmax and the true labels of the evaluation examples. total_label_counts = ec.ErrorCounts(0, 0, 0, 0) total_word_counts = ec.ErrorCounts(0, 0, 0, 0) sequence_errors = 0 for _ in xrange(num_steps): softmax_result, labels = model.RunAStep(sess) # Collapse softmax to same shape as labels. predictions = softmax_result.argmax(axis=-1) # Exclude batch from num_dims. num_dims = len(predictions.shape) - 1 batch_size = predictions.shape[0] null_label = softmax_result.shape[-1] - 1 for b in xrange(batch_size): if num_dims == 2: # TODO(rays) Support 2-d data. raise ValueError('2-d label data not supported yet!') else: if num_dims == 1: pred_batch = predictions[b, :] labels_batch = labels[b, :] else: pred_batch = [predictions[b]] labels_batch = [labels[b]] text = self.StringFromCTC(pred_batch, model.using_ctc, null_label) truth = self.StringFromCTC(labels_batch, False, null_label) # Note that recall_errs is false negatives (fn) aka drops/deletions. # Actual recall would be 1-fn/truth_words. # Likewise precision_errs is false positives (fp) aka adds/insertions. # Actual precision would be 1-fp/ocr_words. total_word_counts = ec.AddErrors( total_word_counts, ec.CountWordErrors(text, truth)) total_label_counts = ec.AddErrors( total_label_counts, ec.CountErrors(text, truth)) if text != truth: sequence_errors += 1 coord.request_stop() coord.join(threads) return ec.ComputeErrorRates(total_label_counts, total_word_counts, sequence_errors, num_steps * batch_size)