Exemple #1
0
    def __init__(self, model_path: str, lm_path: str):
        super(TraceModel, self).__init__()
        self.model, self.train_args = load_trained_model(model_path=model_path)
        logging.info(self.model)
        assert isinstance(self.model, ASRInterface)
        self.model.eval()
        self.recog_args = self.__get_recog_args()
        self.rnnlm = self.__make_lm_module(lm_path=lm_path)
        scorers = self.model.scorers()
        scorers["lm"] = self.rnnlm
        scorers["length_bonus"] = LengthBonus(len(self.train_args.char_list))
        weights = dict(
            decoder=1.0 - self.recog_args.ctc_weight,
            ctc=self.recog_args.ctc_weight,
            lm=self.recog_args.lm_weight,
            length_bonus=self.recog_args.penalty,
        )

        self.beam_search = BeamSearch(
            beam_size=self.recog_args.beam_size,
            vocab_size=len(self.train_args.char_list),
            weights=weights,
            scorers=scorers,
            sos=self.model.sos,
            eos=self.model.eos,
            token_list=self.train_args.char_list,
            pre_beam_score_key=None
            if self.recog_args.ctc_weight == 1.0 else "decoder",
        )
Exemple #2
0
 def __init__(self, model_path: str, lm_path: str):
     super(TraceModel, self).__init__()
     self.model, self.train_args = load_trained_model(model_path=model_path)
     logging.info(self.model)
     assert isinstance(self.model, ASRInterface)
     self.model.eval()
     self.recog_args = self.__get_recog_args()
Exemple #3
0
 def build(self):
     self.device = torch.device(self.config["device"])
     with open(self.config["model_config"]) as f:
         cfg = json.load(f)
     encoder, _ = load_trained_model(cfg.pop("pretrained_encoder"))
     decoder = DECODERS.get(cfg.pop("decoder_type"))(
         output_dim=self.n_classes, **cfg)
     return EncoderDecoder(encoder, decoder).to(self.device)
Exemple #4
0
def build_encoder(model_dir, freeze=None):
    options = load_args(model_dir)
    model, train_args = load_trained_model(options.resume)
    model.teacher_model = None
    if freeze:
        for m in freeze:
            logger.info(f"Freeze {m} in encoder")
            for p in getattr(model, m).parameters():
                p.requires_grad = False
    display_model(model, logger.info)
    logger.debug(train_args)
    return model
def main(args):
    """Run the main function"""

    model_name = args[0] + "_" + args[3] + "_" + os.path.splitext(
        os.path.basename(args[2]))[0] + "_" + os.path.splitext(
            os.path.basename(args[1]))[0]
    model_loc = "exp/" + model_name + "/results/" + args[4]
    print(model_loc)
    model, _ = load_trained_model(model_loc)

    model_parameters = filter(lambda p: p.requires_grad, model.parameters())
    params = sum([np.prod(p.size()) for p in model_parameters])

    print("Trainable parameters: ", params)
Exemple #6
0
def main(args):
    """Run the main function"""

    model_name = args[0] + "_" + args[3] + "_" + os.path.splitext(
        os.path.basename(args[2]))[0] + "_" + os.path.splitext(
            os.path.basename(args[1]))[0]
    model_loc = "exp/" + model_name + "/results/" + args[0]
    #model_loc="exp/all_cleaned_pytorch_train_large_transformer_retrained_transformer_model/results/model.last10.avg.best"
    print(model_loc)
    model, _ = load_trained_model(model_loc)

    model_parameters = filter(lambda p: p.requires_grad, model.parameters())
    params = sum([np.prod(p.size()) for p in model_parameters])

    print("Trainable parameters: ", params)
def test_auxiliary_task(train_dic):
    train_args = make_train_args(**train_dic)
    recog_args = make_recog_args()

    model, x, ilens, y, data, uttid_list = prepare(train_args)

    optim = torch.optim.Adam(model.parameters(), 0.01)
    loss = model(x, ilens, y)

    optim.zero_grad()
    loss.backward()
    optim.step()

    beam_search = BeamSearchTransducer(
        decoder=model.decoder,
        joint_network=model.joint_network,
        beam_size=recog_args.beam_size,
        lm=recog_args.rnnlm,
        lm_weight=recog_args.lm_weight,
        search_type=recog_args.search_type,
        max_sym_exp=recog_args.max_sym_exp,
        u_max=recog_args.u_max,
        nstep=recog_args.nstep,
        prefix_alpha=recog_args.prefix_alpha,
        score_norm=recog_args.score_norm_transducer,
    )

    tmpdir = tempfile.mkdtemp(prefix="tmp_", dir="/tmp")
    torch.save(model.state_dict(), tmpdir + "/model.dummy.best")

    with open(tmpdir + "/model.json", "wb") as f:
        f.write(
            json.dumps(
                (12, 5, vars(train_args)),
                indent=4,
                ensure_ascii=False,
                sort_keys=True,
            ).encode("utf_8"))

    with torch.no_grad():
        model, _ = load_trained_model(tmpdir + "/model.dummy.best",
                                      training=False)

        nbest = model.recognize(x[0, :ilens[0]].numpy(), beam_search)

        print(y[0])
        print(nbest[0]["yseq"][1:-1])
Exemple #8
0
def test_auxiliary_task(train_dic):
    idim, odim, ilens, olens = get_default_scope_inputs()

    train_args = get_default_train_args(**train_dic)
    recog_args = get_default_recog_args()

    model = E2E(idim, odim, train_args)

    batch = prepare_inputs(idim, odim, ilens, olens)

    loss = model(*batch)
    loss.backward()

    beam_search = BeamSearchTransducer(
        decoder=model.dec,
        joint_network=model.joint_network,
        beam_size=recog_args.beam_size,
        lm=recog_args.rnnlm,
        lm_weight=recog_args.lm_weight,
        search_type=recog_args.search_type,
        max_sym_exp=recog_args.max_sym_exp,
        u_max=recog_args.u_max,
        nstep=recog_args.nstep,
        prefix_alpha=recog_args.prefix_alpha,
        score_norm=recog_args.score_norm_transducer,
    )

    tmpdir = tempfile.mkdtemp(prefix="tmp_", dir="/tmp")
    torch.save(model.state_dict(), tmpdir + "/model.dummy.best")

    with open(tmpdir + "/model.json", "wb") as f:
        f.write(
            json.dumps(
                (idim, odim, vars(train_args)),
                indent=4,
                ensure_ascii=False,
                sort_keys=True,
            ).encode("utf_8"))

    with torch.no_grad():
        in_data = np.random.randn(20, idim)

        model, _ = load_trained_model(tmpdir + "/model.dummy.best",
                                      training=False)

        model.recognize(in_data, beam_search)
Exemple #9
0
def trans(args):
    """Decode with the given args.

    Args:
        args (namespace): The program arguments.

    """
    set_deterministic_pytorch(args)
    model, train_args = load_trained_model(args.model)
    assert isinstance(model, STInterface)
    # args.ctc_weight = 0.0
    model.trans_args = args

    # read rnnlm
    if args.rnnlm:
        rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
        if getattr(rnnlm_args, "model_module", "default") != "default":
            raise ValueError(
                "use '--api v2' option to decode with non-default language model"
            )
        rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(len(train_args.char_list), rnnlm_args.layer,
                             rnnlm_args.unit))
        torch_load(args.rnnlm, rnnlm)
        rnnlm.eval()
    else:
        rnnlm = None

    # gpu
    if args.ngpu == 1:
        gpu_id = list(range(args.ngpu))
        logging.info("gpu id: " + str(gpu_id))
        model.cuda()
        if rnnlm:
            rnnlm.cuda()

    # read json data
    with open(args.trans_json, "rb") as f:
        js = json.load(f)["utts"]
    new_js = {}

    load_inputs_and_targets = LoadInputsAndTargets(
        mode="asr",
        load_output=False,
        sort_in_input_length=False,
        preprocess_conf=train_args.preprocess_conf
        if args.preprocess_conf is None else args.preprocess_conf,
        preprocess_args={"train": False},
    )

    if args.batchsize == 0:
        with torch.no_grad():
            for idx, name in enumerate(js.keys(), 1):
                logging.info("(%d/%d) decoding " + name, idx, len(js.keys()))
                batch = [(name, js[name])]
                feat = load_inputs_and_targets(batch)[0][0]
                nbest_hyps = model.translate(feat, args, train_args.char_list,
                                             rnnlm)
                new_js[name] = add_results_to_json(js[name], nbest_hyps,
                                                   train_args.char_list)

    else:

        def grouper(n, iterable, fillvalue=None):
            kargs = [iter(iterable)] * n
            return zip_longest(*kargs, fillvalue=fillvalue)

        # sort data if batchsize > 1
        keys = list(js.keys())
        if args.batchsize > 1:
            feat_lens = [js[key]["input"][0]["shape"][0] for key in keys]
            sorted_index = sorted(range(len(feat_lens)),
                                  key=lambda i: -feat_lens[i])
            keys = [keys[i] for i in sorted_index]

        with torch.no_grad():
            for names in grouper(args.batchsize, keys, None):
                names = [name for name in names if name]
                batch = [(name, js[name]) for name in names]
                feats = load_inputs_and_targets(batch)[0]
                nbest_hyps = model.translate_batch(feats,
                                                   args,
                                                   train_args.char_list,
                                                   rnnlm=rnnlm)

                for i, nbest_hyp in enumerate(nbest_hyps):
                    name = names[i]
                    new_js[name] = add_results_to_json(js[name], nbest_hyp,
                                                       train_args.char_list)

    with open(args.result_label, "wb") as f:
        f.write(
            json.dumps({
                "utts": new_js
            },
                       indent=4,
                       ensure_ascii=False,
                       sort_keys=True).encode("utf_8"))
Exemple #10
0
def recog(args):
    """Decode with the given args.

    Args:
        args (namespace): The program arguments.

    """
    set_deterministic_pytorch(args)
    model, train_args = load_trained_model(args.model)
    assert isinstance(model, ASRInterface)
    model.recog_args = args

    if args.streaming_mode and "transformer" in train_args.model_module:
        raise NotImplementedError("streaming mode for transformer is not implemented")
    logging.info(
        " Total parameter of the model = "
        + str(sum(p.numel() for p in model.parameters()))
    )

    # read rnnlm
    rnnlm = None

    # gpu
    if args.ngpu == 1:
        gpu_id = list(range(args.ngpu))
        logging.info("gpu id: " + str(gpu_id))
        model.cuda()

    # read json data
    with open(args.recog_json, "rb") as f:
        js = json.load(f)["utts"]
    new_js = {}

    load_inputs_and_targets = LoadInputsAndTargets(
        mode="asr",
        load_output=False,
        sort_in_input_length=False,
        preprocess_conf=train_args.preprocess_conf
        if args.preprocess_conf is None
        else args.preprocess_conf,
        preprocess_args={"train": False},
    )

    ark_file = open(args.result_ark,'wb')
    if args.batchsize == 0:
        with torch.no_grad():
            for idx, name in enumerate(js.keys(), 1):
                logging.info("(%d/%d) decoding " + name, idx, len(js.keys()))
                batch = [(name, js[name])]
                feat = load_inputs_and_targets(batch)
                feat = (
                    feat[0][0]
                    if args.num_encs == 1
                    else [feat[idx][0] for idx in range(model.num_encs)]
                )
                hyps = model.recognize(
                    feat, args, train_args.char_list, rnnlm
                )
                # TODO: is there any way to overwrite decoding results into new js?
                hyps = hyps.squeeze(1)
                hyps = hyps.data.numpy()
                write_mat(ark_file, hyps, key=name)

    else:
        def grouper(n, iterable, fillvalue=None):
            kargs = [iter(iterable)] * n
            return zip_longest(*kargs, fillvalue=fillvalue)

        keys = list(js.keys())
        if args.batchsize > 1:
            feat_lens = [js[key]["input"][0]["shape"][0] for key in keys]
            sorted_index = sorted(range(len(feat_lens)), key=lambda i: -feat_lens[i])
            keys = [keys[i] for i in sorted_index]

        with torch.no_grad():
            iteration = 1
            for names in grouper(args.batchsize, keys, None):
                dec_idx = iteration * len(names)
                logging.info("(%d/%d) decoding ", dec_idx, len(keys))
                names = [name for name in names if name]
                batch = [(name, js[name]) for name in names]
                feats = (
                    load_inputs_and_targets(batch)[0]
                    if args.num_encs == 1
                    else load_inputs_and_targets(batch)
                )

                hyps = model.recognize_batch(
                    feats, args, train_args.char_list, rnnlm=rnnlm
                )

                # TODO: is there any way to overwrite decoding results into new js?
                hyps = hyps.data.cpu().numpy()
                for idx, hyp in enumerate(hyps):
                    write_mat(ark_file, hyp, key=names[idx])

                iteration+=1
Exemple #11
0
def recog(args):
    """Decode with the given args.

    Args:
        args (namespace): The program arguments.

    """
    set_deterministic_pytorch(args)
    model, train_args = load_trained_model(args.model)
    assert isinstance(model, ASRInterface)
    model.recog_args = args

    if args.streaming_mode and "transformer" in train_args.model_module:
        raise NotImplementedError(
            "streaming mode for transformer is not implemented")

    # read rnnlm
    if args.rnnlm:
        rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
        if getattr(rnnlm_args, "model_module", "default") != "default":
            raise ValueError(
                "use '--api v2' option to decode with non-default language model"
            )
        rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(
                len(train_args.char_list),
                rnnlm_args.layer,
                rnnlm_args.unit,
                getattr(rnnlm_args, "embed_unit",
                        None),  # for backward compatibility
            ))
        torch_load(args.rnnlm, rnnlm)
        rnnlm.eval()
    else:
        rnnlm = None

    if args.word_rnnlm:
        rnnlm_args = get_model_conf(args.word_rnnlm, args.word_rnnlm_conf)
        word_dict = rnnlm_args.char_list_dict
        char_dict = {x: i for i, x in enumerate(train_args.char_list)}
        word_rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(
                len(word_dict),
                rnnlm_args.layer,
                rnnlm_args.unit,
                getattr(rnnlm_args, "embed_unit",
                        None),  # for backward compatibility
            ))
        torch_load(args.word_rnnlm, word_rnnlm)
        word_rnnlm.eval()

        if rnnlm is not None:
            rnnlm = lm_pytorch.ClassifierWithState(
                extlm_pytorch.MultiLevelLM(word_rnnlm.predictor,
                                           rnnlm.predictor, word_dict,
                                           char_dict))
        else:
            rnnlm = lm_pytorch.ClassifierWithState(
                extlm_pytorch.LookAheadWordLM(word_rnnlm.predictor, word_dict,
                                              char_dict))

    # gpu
    if args.ngpu == 1:
        gpu_id = list(range(args.ngpu))
        logging.info("gpu id: " + str(gpu_id))
        model.cuda()
        if rnnlm:
            rnnlm.cuda()

    # read json data
    with open(args.recog_json, "rb") as f:
        js = json.load(f)["utts"]
    new_js = {}

    load_inputs_and_targets = LoadInputsAndTargets(
        mode="asr",
        load_output=False,
        sort_in_input_length=False,
        preprocess_conf=train_args.preprocess_conf
        if args.preprocess_conf is None else args.preprocess_conf,
        preprocess_args={"train": False},
    )

    if args.batchsize == 0:
        with torch.no_grad():
            for idx, name in enumerate(js.keys(), 1):
                logging.info("(%d/%d) decoding " + name, idx, len(js.keys()))
                batch = [(name, js[name])]
                feat = load_inputs_and_targets(batch)
                feat = (feat[0][0] if args.num_encs == 1 else
                        [feat[idx][0] for idx in range(model.num_encs)])
                if args.streaming_mode == "window" and args.num_encs == 1:
                    logging.info(
                        "Using streaming recognizer with window size %d frames",
                        args.streaming_window,
                    )
                    se2e = WindowStreamingE2E(e2e=model,
                                              recog_args=args,
                                              rnnlm=rnnlm)
                    for i in range(0, feat.shape[0], args.streaming_window):
                        logging.info("Feeding frames %d - %d", i,
                                     i + args.streaming_window)
                        se2e.accept_input(feat[i:i + args.streaming_window])
                    logging.info("Running offline attention decoder")
                    se2e.decode_with_attention_offline()
                    logging.info("Offline attention decoder finished")
                    nbest_hyps = se2e.retrieve_recognition()
                elif args.streaming_mode == "segment" and args.num_encs == 1:
                    logging.info(
                        "Using streaming recognizer with threshold value %d",
                        args.streaming_min_blank_dur,
                    )
                    nbest_hyps = []
                    for n in range(args.nbest):
                        nbest_hyps.append({"yseq": [], "score": 0.0})
                    se2e = SegmentStreamingE2E(e2e=model,
                                               recog_args=args,
                                               rnnlm=rnnlm)
                    r = np.prod(model.subsample)
                    for i in range(0, feat.shape[0], r):
                        hyps = se2e.accept_input(feat[i:i + r])
                        if hyps is not None:
                            text = "".join([
                                train_args.char_list[int(x)]
                                for x in hyps[0]["yseq"][1:-1] if int(x) != -1
                            ])
                            text = text.replace(
                                "\u2581", " ").strip()  # for SentencePiece
                            text = text.replace(model.space, " ")
                            text = text.replace(model.blank, "")
                            logging.info(text)
                            for n in range(args.nbest):
                                nbest_hyps[n]["yseq"].extend(hyps[n]["yseq"])
                                nbest_hyps[n]["score"] += hyps[n]["score"]
                else:
                    nbest_hyps = model.recognize(feat, args,
                                                 train_args.char_list, rnnlm)
                new_js[name] = add_results_to_json(js[name], nbest_hyps,
                                                   train_args.char_list)

    else:

        def grouper(n, iterable, fillvalue=None):
            kargs = [iter(iterable)] * n
            return zip_longest(*kargs, fillvalue=fillvalue)

        # sort data if batchsize > 1
        keys = list(js.keys())
        if args.batchsize > 1:
            feat_lens = [js[key]["input"][0]["shape"][0] for key in keys]
            sorted_index = sorted(range(len(feat_lens)),
                                  key=lambda i: -feat_lens[i])
            keys = [keys[i] for i in sorted_index]

        with torch.no_grad():
            for names in grouper(args.batchsize, keys, None):
                names = [name for name in names if name]
                batch = [(name, js[name]) for name in names]
                feats = (load_inputs_and_targets(batch)[0] if args.num_encs
                         == 1 else load_inputs_and_targets(batch))
                if args.streaming_mode == "window" and args.num_encs == 1:
                    raise NotImplementedError
                elif args.streaming_mode == "segment" and args.num_encs == 1:
                    if args.batchsize > 1:
                        raise NotImplementedError
                    feat = feats[0]
                    nbest_hyps = []
                    for n in range(args.nbest):
                        nbest_hyps.append({"yseq": [], "score": 0.0})
                    se2e = SegmentStreamingE2E(e2e=model,
                                               recog_args=args,
                                               rnnlm=rnnlm)
                    r = np.prod(model.subsample)
                    for i in range(0, feat.shape[0], r):
                        hyps = se2e.accept_input(feat[i:i + r])
                        if hyps is not None:
                            text = "".join([
                                train_args.char_list[int(x)]
                                for x in hyps[0]["yseq"][1:-1] if int(x) != -1
                            ])
                            text = text.replace(
                                "\u2581", " ").strip()  # for SentencePiece
                            text = text.replace(model.space, " ")
                            text = text.replace(model.blank, "")
                            logging.info(text)
                            for n in range(args.nbest):
                                nbest_hyps[n]["yseq"].extend(hyps[n]["yseq"])
                                nbest_hyps[n]["score"] += hyps[n]["score"]
                    nbest_hyps = [nbest_hyps]
                else:
                    nbest_hyps = model.recognize_batch(feats,
                                                       args,
                                                       train_args.char_list,
                                                       rnnlm=rnnlm)

                for i, nbest_hyp in enumerate(nbest_hyps):
                    name = names[i]
                    new_js[name] = add_results_to_json(js[name], nbest_hyp,
                                                       train_args.char_list)

    with open(args.result_label, "wb") as f:
        f.write(
            json.dumps({
                "utts": new_js
            },
                       indent=4,
                       ensure_ascii=False,
                       sort_keys=True).encode("utf_8"))
Exemple #12
0
def ctc_align(args):
    """CTC forced alignments with the given args.

    Args:
        args (namespace): The program arguments.
    """
    def add_alignment_to_json(js, alignment, char_list):
        """Add N-best results to json.

        Args:
            js (dict[str, Any]): Groundtruth utterance dict.
            alignment (list[int]): List of alignment.
            char_list (list[str]): List of characters.

        Returns:
            dict[str, Any]: N-best results added utterance dict.

        """
        # copy old json info
        new_js = dict()
        new_js["ctc_alignment"] = []

        alignment_tokens = []
        for idx, a in enumerate(alignment):
            alignment_tokens.append(char_list[a])
        alignment_tokens = " ".join(alignment_tokens)

        new_js["ctc_alignment"] = alignment_tokens

        return new_js

    set_deterministic_pytorch(args)
    model, train_args = load_trained_model(args.model)
    assert isinstance(model, ASRInterface)
    model.eval()

    load_inputs_and_targets = LoadInputsAndTargets(
        mode="asr",
        load_output=True,
        sort_in_input_length=False,
        preprocess_conf=train_args.preprocess_conf
        if args.preprocess_conf is None else args.preprocess_conf,
        preprocess_args={"train": False},
    )

    if args.ngpu > 1:
        raise NotImplementedError("only single GPU decoding is supported")
    if args.ngpu == 1:
        device = "cuda"
    else:
        device = "cpu"
    dtype = getattr(torch, args.dtype)
    logging.info(f"Decoding device={device}, dtype={dtype}")
    model.to(device=device, dtype=dtype).eval()

    # read json data
    with open(args.align_json, "rb") as f:
        js = json.load(f)["utts"]
    new_js = {}
    if args.batchsize == 0:
        with torch.no_grad():
            for idx, name in enumerate(js.keys(), 1):
                logging.info("(%d/%d) aligning " + name, idx, len(js.keys()))
                batch = [(name, js[name])]
                feat, label = load_inputs_and_targets(batch)
                feat = feat[0]
                label = label[0]
                enc = model.encode(
                    torch.as_tensor(feat).to(device)).unsqueeze(0)
                alignment = model.ctc.forced_align(enc, label)
                new_js[name] = add_alignment_to_json(js[name], alignment,
                                                     train_args.char_list)
    else:
        raise NotImplementedError("Align_batch is not implemented.")

    with open(args.result_label, "wb") as f:
        f.write(
            json.dumps({
                "utts": new_js
            },
                       indent=4,
                       ensure_ascii=False,
                       sort_keys=True).encode("utf_8"))
Exemple #13
0
def recog(args):
    """Decode with the given args.
    Args:
        args (namespace): The program arguments.
    """
    set_deterministic_pytorch(args)
    model, train_args = load_trained_model(args.model_path)
    assert isinstance(model, ASRInterface)
    model.recog_args = args

    # read json data
    with open(args.recog_json, 'rb') as f:
        js = json.load(f)['utts']
    new_js = {}

    print(args.preprocess_conf)

    load_inputs_and_targets = LoadInputsAndTargets(
        mode='asr',
        load_output=False,
        sort_in_input_length=False,
        preprocess_conf=train_args.preprocess_conf
        if args.preprocess_conf is None else args.preprocess_conf,
        preprocess_args={'train': False})

    if args.batchsize == 0:
        model.eval()
        # import torch.onnx
        # batch_size = 5
        # xs_pad = torch.randn(batch_size, 1000, 83)
        # ilens = torch.randint(100, (batch_size,))
        # ys_pad = torch.randint(100, (batch_size, 1000))
        # # loss = model(xs_pad, ilens, ys_pad)
        # torch.onnx.export(model, (xs_pad, ilens, ys_pad), "sup_mlt.onnx",
        #                     do_constant_folding=True, opset_version=12,
        #                     input_names = ['xs_pad', 'ilens', "ys_pad"], output_names = ['output'],
        #                     dynamic_axes={'xs_pad' : {0 : 'batch_size'},
        #                                 'ilens' : {0 : 'batch_size'},
        #                                 'ys_pad' : {0 : 'batch_size'}})
        # scripted_module = torch.jit.script(model)
        # seq_len = 257
        # x = torch.randn(seq_len, 83, requires_grad=True)
        # torch.onnx.export(model, x, "sup_mlt.onnx", opset_version=11,
        #                     do_constant_folding=True,
        #                     input_names = ['input'], output_names = ['output'],
        #                     dynamic_axes={'input' : {0 : 'seq_len'}, 'output' : {0 : 'seq_len'}})
        # import onnxruntime
        # ort_session = onnxruntime.InferenceSession("sup_mlt.onnx")
        # print(ort_session.get_inputs()[0].name)
        '''
        decoder_fos.onnxde
        '''
        # from espnet.nets.pytorch_backend.transformer.mask import subsequent_mask
        # ys = torch.tensor([7442, 2]).unsqueeze(0)
        # ys_mask = subsequent_mask(2).unsqueeze(0)
        # enc_output = torch.randn(1, 63, 256)
        # torch.onnx.export(model, (ys, ys_mask, enc_output), "encoder_fos.onnx", opset_version=11,
        #                     do_constant_folding=True,
        #                     input_names = ['ys', 'ys_mask', 'enc_output'], output_names = ['output'],
        #                     dynamic_axes={'ys' : {1 : 'len1'}, 'ys_mask' : {1 : 'len21', 2 : 'len22'}, 'enc_output' : {1 : 'len3'},
        #                     'output' : {}})
        '''
        encoder.onnx
        '''
        # x = torch.rand(257, 83)
        # torch.onnx.export(model, x, "encoder.onnx", opset_version=11,
        #                     do_constant_folding=True,
        #                     input_names = ['x'], output_names = ['enc_output'],
        #                     dynamic_axes={'x' : {0 : 'len1'}, 'enc_output' : {1 : 'len2'}})
        '''
        ctc_softmax.onnx
        '''
        # enc_output = torch.rand(1, 63, 256)
        # torch.onnx.export(model, enc_output, "ctc_softmax.onnx", opset_version=11,
        #                     do_constant_folding=True,
        #                     input_names = ['enc_output'], output_names = ['lpz'],
        #                     dynamic_axes={'enc_output' : {1 : 'len1'}, 'lpz' : {0 : 'len2'}})

        with torch.no_grad():
            for idx, name in enumerate(js.keys(), 1):
                logging.info('(%d/%d) decoding ' + name, idx, len(js.keys()))
                batch = [(name, js[name])]
                feat = load_inputs_and_targets(batch)
                feat = feat[0][0] if args.num_encs == 1 else [
                    feat[idx][0] for idx in range(model.num_encs)
                ]
                feat = torch.from_numpy(feat)
                print(f"input size: {feat.shape}")
                from pyonnxrt import infer
                nbest_hyps = infer(feat)
                # nbest_hyps = model(feat)
                # get token ids and tokens
                tokenid_as_list = list(map(int, nbest_hyps[1:]))
                token_as_list = [
                    train_args.char_list[idx] for idx in tokenid_as_list
                ]
                print(token_as_list)
                # new_js[name] = add_results_to_json(js[name], nbest_hyps, train_args.char_list)
                # print(new_js)
                if idx == 10:
                    exit()
        exit()
    else:

        def grouper(n, iterable, fillvalue=None):
            kargs = [iter(iterable)] * n
            return zip_longest(*kargs, fillvalue=fillvalue)

        # sort data if batchsize > 1
        keys = list(js.keys())
        if args.batchsize > 1:
            feat_lens = [js[key]['input'][0]['shape'][0] for key in keys]
            sorted_index = sorted(range(len(feat_lens)),
                                  key=lambda i: -feat_lens[i])
            keys = [keys[i] for i in sorted_index]

        with torch.no_grad():
            for names in grouper(args.batchsize, keys, None):
                names = [name for name in names if name]
                batch = [(name, js[name]) for name in names]
                feats = load_inputs_and_targets(
                    batch
                )[0] if args.num_encs == 1 else load_inputs_and_targets(batch)
                if args.streaming_mode == 'window' and args.num_encs == 1:
                    raise NotImplementedError
                elif args.streaming_mode == 'segment' and args.num_encs == 1:
                    if args.batchsize > 1:
                        raise NotImplementedError
                    feat = feats[0]
                    nbest_hyps = []
                    for n in range(args.nbest):
                        nbest_hyps.append({'yseq': [], 'score': 0.0})
                    se2e = SegmentStreamingE2E(e2e=model,
                                               recog_args=args,
                                               rnnlm=rnnlm)
                    r = np.prod(model.subsample)
                    for i in range(0, feat.shape[0], r):
                        hyps = se2e.accept_input(feat[i:i + r])
                        if hyps is not None:
                            text = ''.join([
                                train_args.char_list[int(x)]
                                for x in hyps[0]['yseq'][1:-1] if int(x) != -1
                            ])
                            text = text.replace(
                                '\u2581', ' ').strip()  # for SentencePiece
                            text = text.replace(model.space, ' ')
                            text = text.replace(model.blank, '')
                            logging.info(text)
                            for n in range(args.nbest):
                                nbest_hyps[n]['yseq'].extend(hyps[n]['yseq'])
                                nbest_hyps[n]['score'] += hyps[n]['score']
                    nbest_hyps = [nbest_hyps]
                else:
                    nbest_hyps = model.recognize_batch(feats,
                                                       args,
                                                       train_args.char_list,
                                                       rnnlm=rnnlm)

                for i, nbest_hyp in enumerate(nbest_hyps):
                    name = names[i]
                    new_js[name] = add_results_to_json(js[name], nbest_hyp,
                                                       train_args.char_list)

    with open(args.result_label, 'wb') as f:
        f.write(
            json.dumps({
                'utts': new_js
            },
                       indent=4,
                       ensure_ascii=False,
                       sort_keys=True).encode('utf_8'))
Exemple #14
0
def recog(args):
    """Decode with the given args.

    Args:
        args (namespace): The program arguments.
    """
    set_deterministic_pytorch(args)
    model, train_args = load_trained_model(args.model)
    assert isinstance(model, ASRInterface)
    model.recog_args = args

    # gpu
    if args.ngpu == 1:
        gpu_id = list(range(args.ngpu))
        logging.info('gpu id: ' + str(gpu_id))
        model.cuda()
    device = torch.device("cuda" if args.ngpu > 0 else "cpu")
    model = model.to(device)


    # read json data
    with open(args.recog_json, 'rb') as f:
        js = json.load(f)['utts']

    load_inputs_and_targets = LoadInputsAndTargets(
        mode='asr', load_output=True, sort_in_input_length=False,
        preprocess_conf=train_args.preprocess_conf
        if args.preprocess_conf is None else args.preprocess_conf,
        preprocess_args={'train': False})
    import kaldiio
    import time
    with torch.no_grad(), \
            kaldiio.WriteHelper('ark,scp:{o}.ark,{o}.scp'.format(o=args.out)) as f:
        ys = []
        xs = []
        for idx, utt_id in enumerate(js.keys()):
            logging.info('(%d/%d) decoding ' + utt_id, idx, len(js.keys()))
            batch = [(utt_id, js[utt_id])]
            data = load_inputs_and_targets(batch)
            feat = data[0][0]
            ys.append(data[1][0])
            # x = torch.LongTensor(x).to(device)

            # decode and write
            start_time = time.time()
            # include the inference here
            # have the layer specification here
            # skeleton model.inference(x, args, layer)
            scores, outs = model.inference(feat, ys, args, train_args.char_list)
            xs.append(scores)
            logging.info("inference speed = %s msec / frame." % (
                (time.time() - start_time) / (int(outs.size(0)) * 1000)))
            logging.warning("output length reaches maximum length (%s)." % utt_id)
            logging.info('(%d/%d) %s (size:%d->%d)' % (
                idx + 1, len(js.keys()), utt_id, len(feat), outs.size(0)))
            f[utt_id] = outs.cpu().numpy()
        from espnet.nets.pytorch_backend.nets_utils import th_accuracy
        preds = torch.stack(xs).view(len(xs), -1)
        labels = torch.LongTensor(ys).view(len(xs), 1)
        acc = th_accuracy(preds, labels, -1)
        logging.warn("Final acc is (%.2f)" % (acc*100))
Exemple #15
0
#train_json='/mnt/lustre/sjtu/users/yzl23/work_dir/asr/is20_codeswitching/espnet/egs/codeswitching/asr/data/json_data/mix200/data.json'
#valid_json='/mnt/lustre/sjtu/users/yzl23/work_dir/asr/is20_codeswitching/espnet/egs/codeswitching/asr/data/json_data/dev_mix20/data.json'
aux_model_path='/mnt/lustre/sjtu/users/mkh96/wordspace/asr/codeswitch/exp/phone_classifier/transformer_layer12_lsm0.0_ep100/results/snapshot.ep.100'
args, _ = get_parser(required=False).parse_known_args('--config {}  --train-json {} --valid-json {} --ngpu 0 '.format(conf, train_json, valid_json))
args2,_ = get_parser(required=False).parse_known_args('--config {}  --train-json {} --valid-json {} --ngpu 0 '.format(conf, train_json, eval_json))


# iter
tr_iter, dev_iter = get_iter(args)
_ , eval_iter = get_iter(args2)
tr_iter = tr_iter['main']
dev_iter = dev_iter['main']
eval_iter = eval_iter['main']


aux_model, aux_args = load_trained_model(aux_model_path)
aux_model.eval()

res=OrderedDict()

cnt=1
for batch in itertools.chain(tr_iter, dev_iter, eval_iter):
    xs_pad, ilens, ys_pad, uttid_list, train = batch
    xs_pad = xs_pad[:, :max(ilens)]  # for data parallel
    src_mask = (~make_pad_mask(ilens.tolist())).to(xs_pad.device).unsqueeze(-2)
    with torch.no_grad():
        emb, masks = aux_model.encoder(xs_pad, src_mask)
        masks = masks.squeeze(1)
        #print(masks, 'masks')
        #print(emb.size(), masks.size())
        if onehot:
Exemple #16
0
def ctc_align(args, device):
    """ESPnet-specific interface for CTC segmentation.

    Parses configuration, infers the CTC posterior probabilities,
    and then aligns start and end of utterances using CTC segmentation.
    Results are written to the output file given in the args.

    :param args: given configuration
    :param device: for inference; one of ['cuda', 'cpu']
    :return:  0 on success
    """
    model, train_args = load_trained_model(args.model)
    assert isinstance(model, ASRInterface)
    load_inputs_and_targets = LoadInputsAndTargets(
        mode="asr",
        load_output=True,
        sort_in_input_length=False,
        preprocess_conf=train_args.preprocess_conf
        if args.preprocess_conf is None else args.preprocess_conf,
        preprocess_args={"train": False},
    )
    logging.info(f"Decoding device={device}")
    model.to(device=device).eval()
    # read audio and text json data
    with open(args.data_json, "rb") as f:
        js = json.load(f)["utts"]
    with open(args.utt_text, "r") as f:
        lines = f.readlines()
        i = 0
        text = {}
        segment_names = {}
        for name in js.keys():
            text_per_audio = []
            segment_names_per_audio = []
            while i < len(lines) and lines[i].startswith(name):
                text_per_audio.append(lines[i][lines[i].find(" ") + 1:])
                segment_names_per_audio.append(lines[i][:lines[i].find(" ")])
                i += 1
            text[name] = text_per_audio
            segment_names[name] = segment_names_per_audio
    # apply configuration
    config = CtcSegmentationParameters()
    if args.subsampling_factor is not None:
        config.subsampling_factor = args.subsampling_factor
    if args.frame_duration is not None:
        config.frame_duration_ms = args.frame_duration
    if args.min_window_size is not None:
        config.min_window_size = args.min_window_size
    if args.max_window_size is not None:
        config.max_window_size = args.max_window_size
    char_list = train_args.char_list
    if args.use_dict_blank:
        config.blank = char_list[0]
    logging.debug(
        f"Frame timings: {config.frame_duration_ms}ms * {config.subsampling_factor}"
    )
    # Iterate over audio files to decode and align
    for idx, name in enumerate(js.keys(), 1):
        logging.info("(%d/%d) Aligning " + name, idx, len(js.keys()))
        batch = [(name, js[name])]
        feat, label = load_inputs_and_targets(batch)
        feat = feat[0]
        with torch.no_grad():
            # Encode input frames
            enc_output = model.encode(
                torch.as_tensor(feat).to(device)).unsqueeze(0)
            # Apply ctc layer to obtain log character probabilities
            lpz = model.ctc.log_softmax(enc_output)[0].cpu().numpy()
        # Prepare the text for aligning
        ground_truth_mat, utt_begin_indices = prepare_text(
            config, text[name], char_list)
        # Align using CTC segmentation
        timings, char_probs, state_list = ctc_segmentation(
            config, lpz, ground_truth_mat)
        # Obtain list of utterances with time intervals and confidence score
        segments = determine_utterance_segments(config, utt_begin_indices,
                                                char_probs, timings,
                                                text[name])
        # Write to "segments" file
        for i, boundary in enumerate(segments):
            utt_segment = (f"{segment_names[name][i]} {name} {boundary[0]:.2f}"
                           f" {boundary[1]:.2f} {boundary[2]:.9f}\n")
            args.output.write(utt_segment)
    return 0
Exemple #17
0
def recog(args):
    """Decode with the given args.

    Args:
        args (namespace): The program arguments.
    """
    set_deterministic_pytorch(args)
    model, train_args = load_trained_model(args.model)
    assert isinstance(model, ASRInterface)
    model.recog_args = args

    # read rnnlm
    if args.rnnlm:
        rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
        if getattr(rnnlm_args, "model_module", "default") != "default":
            raise ValueError(
                "use '--api v2' option to decode with non-default language model"
            )
        rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(len(train_args.char_list), rnnlm_args.layer,
                             rnnlm_args.unit))
        torch_load(args.rnnlm, rnnlm)
        rnnlm.eval()
    else:
        rnnlm = None

    if args.word_rnnlm:
        rnnlm_args = get_model_conf(args.word_rnnlm, args.word_rnnlm_conf)
        word_dict = rnnlm_args.char_list_dict
        char_dict = {x: i for i, x in enumerate(train_args.char_list)}
        word_rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(len(word_dict), rnnlm_args.layer,
                             rnnlm_args.unit))
        torch_load(args.word_rnnlm, word_rnnlm)
        word_rnnlm.eval()

        if rnnlm is not None:
            rnnlm = lm_pytorch.ClassifierWithState(
                extlm_pytorch.MultiLevelLM(word_rnnlm.predictor,
                                           rnnlm.predictor, word_dict,
                                           char_dict))
        else:
            rnnlm = lm_pytorch.ClassifierWithState(
                extlm_pytorch.LookAheadWordLM(word_rnnlm.predictor, word_dict,
                                              char_dict))

    # gpu
    if args.ngpu == 1:
        gpu_id = list(range(args.ngpu))
        logging.info('gpu id: ' + str(gpu_id))
        model.cuda()
        if rnnlm:
            rnnlm.cuda()

    # read json data
    with open(args.recog_json, 'rb') as f:
        js = json.load(f)['utts']
    new_js = {}

    load_inputs_and_targets = LoadInputsAndTargets(
        mode='asr',
        load_output=False,
        sort_in_input_length=False,
        preprocess_conf=train_args.preprocess_conf
        if args.preprocess_conf is None else args.preprocess_conf,
        preprocess_args={'train': False})

    if args.batchsize == 0:
        with torch.no_grad():
            for idx, name in enumerate(js.keys(), 1):
                logging.info('(%d/%d) decoding ' + name, idx, len(js.keys()))
                batch = [(name, js[name])]
                feat = load_inputs_and_targets(batch)[0][0]
                if args.streaming_mode == 'window':
                    logging.info(
                        'Using streaming recognizer with window size %d frames',
                        args.streaming_window)
                    se2e = WindowStreamingE2E(e2e=model,
                                              recog_args=args,
                                              rnnlm=rnnlm)
                    for i in range(0, feat.shape[0], args.streaming_window):
                        logging.info('Feeding frames %d - %d', i,
                                     i + args.streaming_window)
                        se2e.accept_input(feat[i:i + args.streaming_window])
                    logging.info('Running offline attention decoder')
                    se2e.decode_with_attention_offline()
                    logging.info('Offline attention decoder finished')
                    nbest_hyps = se2e.retrieve_recognition()
                elif args.streaming_mode == 'segment':
                    logging.info(
                        'Using streaming recognizer with threshold value %d',
                        args.streaming_min_blank_dur)
                    nbest_hyps = []
                    for n in range(args.nbest):
                        nbest_hyps.append({'yseq': [], 'score': 0.0})
                    se2e = SegmentStreamingE2E(e2e=model,
                                               recog_args=args,
                                               rnnlm=rnnlm)
                    r = np.prod(model.subsample)
                    for i in range(0, feat.shape[0], r):
                        hyps = se2e.accept_input(feat[i:i + r])
                        if hyps is not None:
                            text = ''.join([
                                train_args.char_list[int(x)]
                                for x in hyps[0]['yseq'][1:-1] if int(x) != -1
                            ])
                            text = text.replace(
                                '\u2581', ' ').strip()  # for SentencePiece
                            text = text.replace(model.space, ' ')
                            text = text.replace(model.blank, '')
                            logging.info(text)
                            for n in range(args.nbest):
                                nbest_hyps[n]['yseq'].extend(hyps[n]['yseq'])
                                nbest_hyps[n]['score'] += hyps[n]['score']
                else:
                    nbest_hyps = model.recognize(feat, args,
                                                 train_args.char_list, rnnlm)
                new_js[name] = add_results_to_json(js[name], nbest_hyps,
                                                   train_args.char_list)

    else:

        def grouper(n, iterable, fillvalue=None):
            kargs = [iter(iterable)] * n
            return zip_longest(*kargs, fillvalue=fillvalue)

        # sort data if batchsize > 1
        keys = list(js.keys())
        if args.batchsize > 1:
            feat_lens = [js[key]['input'][0]['shape'][0] for key in keys]
            sorted_index = sorted(range(len(feat_lens)),
                                  key=lambda i: -feat_lens[i])
            keys = [keys[i] for i in sorted_index]

        with torch.no_grad():
            for names in grouper(args.batchsize, keys, None):
                names = [name for name in names if name]
                batch = [(name, js[name]) for name in names]
                feats = load_inputs_and_targets(batch)[0]
                nbest_hyps = model.recognize_batch(feats,
                                                   args,
                                                   train_args.char_list,
                                                   rnnlm=rnnlm)

                for i, nbest_hyp in enumerate(nbest_hyps):
                    name = names[i]
                    new_js[name] = add_results_to_json(js[name], nbest_hyp,
                                                       train_args.char_list)

    with open(args.result_label, 'wb') as f:
        f.write(
            json.dumps({
                'utts': new_js
            },
                       indent=4,
                       ensure_ascii=False,
                       sort_keys=True).encode('utf_8'))
def save_alignment(args):
    set_deterministic_pytorch(args)
    model, train_args = load_trained_model(args.model)
    assert isinstance(model, ASRInterface)
    model.recog_args = args

    # read rnnlm
    if args.rnnlm:
        rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
        if getattr(rnnlm_args, "model_module", "default") != "default":
            raise ValueError("use '--api v2' option to decode with non-default language model")
        rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(
                len(train_args.char_list), rnnlm_args.layer, rnnlm_args.unit))
        torch_load(args.rnnlm, rnnlm)
        rnnlm.eval()
    else:
        rnnlm = None

    if args.word_rnnlm:
        rnnlm_args = get_model_conf(args.word_rnnlm, args.word_rnnlm_conf)
        word_dict = rnnlm_args.char_list_dict
        char_dict = {x: i for i, x in enumerate(train_args.char_list)}
        word_rnnlm = lm_pytorch.ClassifierWithState(lm_pytorch.RNNLM(
            len(word_dict), rnnlm_args.layer, rnnlm_args.unit))
        torch_load(args.word_rnnlm, word_rnnlm)
        word_rnnlm.eval()

        if rnnlm is not None:
            rnnlm = lm_pytorch.ClassifierWithState(
                extlm_pytorch.MultiLevelLM(word_rnnlm.predictor,
                                           rnnlm.predictor, word_dict, char_dict))
        else:
            rnnlm = lm_pytorch.ClassifierWithState(
                extlm_pytorch.LookAheadWordLM(word_rnnlm.predictor,
                                              word_dict, char_dict))

    # set torch device
    device = torch.device("cuda" if args.ngpu > 0 else "cpu")
    dtype = next(model.parameters()).dtype
    model = model.to(device=device)
    if rnnlm:
        rnnlm = rnnlm.to(device=device)

    # read json data
    with open(args.json, 'rb') as f:
        js = json.load(f)['utts']

    load_inputs_and_targets = LoadInputsAndTargets(
        mode='asr', load_output=True, sort_in_input_length=False,
        preprocess_conf=train_args.preprocess_conf if args.preprocess_conf is None else args.preprocess_conf,
        preprocess_args={'train': False})

    # sort data if batchsize > 1
    keys = list(js.keys())
    if args.batchsize > 1:
        feat_lens = [js[key]['input'][0]['shape'][0] for key in keys]
        sorted_index = sorted(range(len(feat_lens)), key=lambda i: -feat_lens[i])
        keys = [keys[i] for i in sorted_index]

    def grouper(n, iterable, fillvalue=None):
        kargs = [iter(iterable)] * n
        return zip_longest(*kargs, fillvalue=fillvalue)

    # Setup a converter
    if args.num_encs == 1:
        converter = CustomConverter(subsampling_factor=model.subsample[0], dtype=dtype)
    else:
        converter = CustomConverterMulEnc([i[0] for i in model.subsample_list], dtype=dtype)

    import matplotlib.pyplot as plt
    outdir = args.outdir
    if not os.path.exists(outdir):
        os.makedirs(outdir)

    with torch.no_grad():
        for names in grouper(args.batchsize, keys, None):
            names = [name for name in names if name]
            batch = [(name, js[name]) for name in names]
            x = converter([load_inputs_and_targets(batch)], device)
            alignments = model.calculate_alignments(*x)

            for i in range(len(alignments)):
                alignment = np.transpose(np.exp(alignments[i].astype(np.float32)))
                np_filename = "%s/%s.npy" % (outdir, names[i])
                np.save(np_filename, alignment)

                plt.imshow(alignment, aspect="auto")
                plt.xlabel("Input Index")
                plt.ylabel("Label Index")
                plt.tight_layout()
                fig_filename = "%s/%s.png" % (outdir, names[i])
                plt.savefig(fig_filename)
                plt.close()
Exemple #19
0
# with open("/root/kws_data/dump/dev/deltafalse/data.json", "r") as f:
#     dev_json = json.load(f)["utts"]

train_data_batches = make_batchset(train_json, 1)
test_data_batches = make_batchset(test_json, 1)
# dev_data_batches = make_batchset(dev_json, 1)

load_tr = LoadInputsAndTargets(
        mode='asr', load_output=True, preprocess_conf=None,
        preprocess_args={'train': True}  # Switch the mode of preprocessing
)

converter = CustomConverter(subsampling_factor=1, dtype=torch.float32)

model, train_args = load_trained_model("/home/ram/chaitanay/model/model.acc.best")
model = model.to(device=device)
model.dec.sampling_probability = 1.0

phone_to_int = dict(zip(train_args.char_list, np.arange(len(train_args.char_list))))
keyword = "G R EY T"
keyword_tokens = torch.tensor([[phone_to_int[phn] for phn in keyword.split(" ")]]).to(device)

encoder_output = 0

# def get_att_score2(att_w_list):
#     atts = [ele.detach().cpu().numpy().flatten() for ele in att_w_list]
#     atts = np.array(atts)
#     sum_att = np.prod(atts, axis=0)
#     att_score = np.trapz(sum_att)
#     return att_score
def get_n_params(model):
    pp = 0
    for p in list(model[0].parameters()):
        nn = 1
        for s in list(p.size()):
            nn = nn * s
        pp += nn
    return pp


from espnet.asr.pytorch_backend.asr_init import load_trained_model
model = load_trained_model(
    r"/teamscratch/tts_intern_experiment/yuwu1/ASR/librispeech_0.4.0/transformer_ourarch_mask_speed_finetune/results/snapshot.ep.60"
)
get_n_params(model)
def recog(args):
    """Decode with the given args.

    Args:
        args (namespace): The program arguments.

    """
    set_deterministic_pytorch(args)
    model, train_args = load_trained_model(args.model)
    model.recog_args = args

    # read rnnlm
    if args.rnnlm:
        rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
        if getattr(rnnlm_args, "model_module", "default") != "default":
            raise ValueError(
                "use '--api v2' option to decode with non-default language model"
            )
        rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(
                len(train_args.char_list),
                rnnlm_args.layer,
                rnnlm_args.unit,
                getattr(rnnlm_args, "embed_unit",
                        None),  # for backward compatibility
            ))
        torch_load(args.rnnlm, rnnlm)
        rnnlm.eval()
    else:
        rnnlm = None

    # gpu
    if args.ngpu == 1:
        gpu_id = list(range(args.ngpu))
        logging.info("gpu id: " + str(gpu_id))
        model.cuda()
        if rnnlm:
            rnnlm.cuda()

    # read json data
    with open(args.recog_json, "rb") as f:
        js = json.load(f)["utts"]
    new_js = {}

    load_inputs_and_targets = LoadInputsAndTargets(
        mode="asr",
        load_output=False,
        sort_in_input_length=False,
        preprocess_conf=train_args.preprocess_conf
        if args.preprocess_conf is None else args.preprocess_conf,
        preprocess_args={"train": False},
    )

    with torch.no_grad():
        for idx, name in enumerate(js.keys(), 1):
            logging.info("(%d/%d) decoding " + name, idx, len(js.keys()))
            batch = [(name, js[name])]
            feat = load_inputs_and_targets(batch)
            feat = feat[0][0]
            if args.prefix_decode:
                best, ids, score = model.prefix_recognize(
                    feat, args, train_args, train_args.char_list, rnnlm)
                new_js[name] = add_single_results(js[name], best, ids, score)
            else:
                nbest_hyps = model.recognize(feat, args, train_args.char_list,
                                             rnnlm)
                new_js[name] = add_results_to_json(js[name], nbest_hyps,
                                                   train_args.char_list)

    with open(args.result_label, "wb") as f:
        f.write(
            json.dumps({
                "utts": new_js
            },
                       indent=4,
                       ensure_ascii=False,
                       sort_keys=True).encode("utf_8"))
Exemple #22
0
def train(args):
    """Train with the given args.

    Args:
        args (namespace): The program arguments.

    """
    set_deterministic_pytorch(args)

    # check cuda availability
    if not torch.cuda.is_available():
        logging.warning('cuda is not available')

    # get input and output dimension info
    with open(args.valid_json, 'rb') as f:
        valid_json = json.load(f)['utts']
    utts = list(valid_json.keys())
    idim = int(valid_json[utts[0]]['input'][0]['shape'][-1])
    odim = int(valid_json[utts[0]]['output'][0]['shape'][-1])
    logging.info('#input dims : ' + str(idim))
    logging.info('#output dims: ' + str(odim))

    # specify attention, CTC, hybrid mode
    if args.mtlalpha == 1.0:
        mtl_mode = 'ctc'
        logging.info('Pure CTC mode')
    elif args.mtlalpha == 0.0:
        mtl_mode = 'att'
        logging.info('Pure attention mode')
    else:
        mtl_mode = 'mtl'
        logging.info('Multitask learning mode')

    if args.enc_init is not None or args.dec_init is not None:
        model = load_trained_modules(idim, odim, args)
    elif args.asr_init is not None:
        model, _ = load_trained_model(args.asr_init)
    else:
        model_class = dynamic_import(args.model_module)
        model = model_class(idim, odim, args)
    assert isinstance(model, ASRInterface)

    subsampling_factor = model.subsample[0]

    if args.rnnlm is not None:
        rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
        rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(len(args.char_list), rnnlm_args.layer,
                             rnnlm_args.unit))
        torch.load(args.rnnlm, rnnlm)
        model.rnnlm = rnnlm

    # write model config
    if not os.path.exists(args.outdir):
        os.makedirs(args.outdir)
    model_conf = args.outdir + '/model.json'
    with open(model_conf, 'wb') as f:
        logging.info('writing a model config file to ' + model_conf)
        f.write(
            json.dumps((idim, odim, vars(args)),
                       indent=4,
                       ensure_ascii=False,
                       sort_keys=True).encode('utf_8'))
    for key in sorted(vars(args).keys()):
        logging.info('ARGS: ' + key + ': ' + str(vars(args)[key]))

    reporter = model.reporter

    # check the use of multi-gpu
    if args.ngpu > 1:
        if args.batch_size != 0:
            logging.info('batch size is automatically increased (%d -> %d)' %
                         (args.batch_size, args.batch_size * args.ngpu))
            args.batch_size *= args.ngpu

    # set torch device
    device = torch.device("cuda" if args.ngpu > 0 else "cpu")
    if args.train_dtype in ("float16", "float32", "float64"):
        dtype = getattr(torch, args.train_dtype)
    else:
        dtype = torch.float32
    logging.info(device)
    logging.info(dtype)
    model = model.to(device=device, dtype=dtype)

    # Setup an optimizer
    if args.opt == 'adadelta':
        optimizer = torch.optim.Adadelta(model.parameters(),
                                         rho=0.95,
                                         eps=args.eps,
                                         weight_decay=args.weight_decay)
    elif args.opt == 'adam':
        optimizer = torch.optim.Adam(model.parameters(),
                                     weight_decay=args.weight_decay)
    elif args.opt == 'noam':
        from espnet.nets.pytorch_backend.rnn.optimizer import get_std_opt
        optimizer = get_std_opt(model, args.adim,
                                args.transformer_warmup_steps,
                                args.transformer_lr)
    else:
        raise NotImplementedError("unknown optimizer: " + args.opt)

    # setup apex.amp
    if args.train_dtype in ("O0", "O1", "O2", "O3"):
        try:
            from apex import amp
        except ImportError as e:
            logging.error(
                f"You need to install apex for --train-dtype {args.train_dtype}. "
                "See https://github.com/NVIDIA/apex#linux")
            raise e
        if args.opt == 'noam':
            model, optimizer.optimizer = amp.initialize(
                model, optimizer.optimizer, opt_level=args.train_dtype)
        else:
            model, optimizer = amp.initialize(model,
                                              optimizer,
                                              opt_level=args.train_dtype)
        use_apex = True
    else:
        use_apex = False

    # FIXME: TOO DIRTY HACK
    setattr(optimizer, "target", reporter)
    setattr(optimizer, "serialize", lambda s: reporter.serialize(s))

    # Setup a converter
    converter = CustomConverter(subsampling_factor=subsampling_factor,
                                dtype=dtype)

    # read json data
    with open(args.train_json, 'rb') as f:
        train_json = json.load(f)['utts']
    with open(args.valid_json, 'rb') as f:
        valid_json = json.load(f)['utts']

    use_sortagrad = args.sortagrad == -1 or args.sortagrad > 0
    # make minibatch list (variable length)
    train = make_batchset(train_json,
                          args.batch_size,
                          args.maxlen_in,
                          args.maxlen_out,
                          args.minibatches,
                          min_batch_size=args.ngpu if args.ngpu > 1 else 1,
                          shortest_first=use_sortagrad,
                          count=args.batch_count,
                          batch_bins=args.batch_bins,
                          batch_frames_in=args.batch_frames_in,
                          batch_frames_out=args.batch_frames_out,
                          batch_frames_inout=args.batch_frames_inout,
                          iaxis=0,
                          oaxis=0)
    valid = make_batchset(valid_json,
                          args.batch_size,
                          args.maxlen_in,
                          args.maxlen_out,
                          args.minibatches,
                          min_batch_size=args.ngpu if args.ngpu > 1 else 1,
                          count=args.batch_count,
                          batch_bins=args.batch_bins,
                          batch_frames_in=args.batch_frames_in,
                          batch_frames_out=args.batch_frames_out,
                          batch_frames_inout=args.batch_frames_inout,
                          iaxis=0,
                          oaxis=0)

    load_tr = LoadInputsAndTargets(
        mode='asr',
        load_output=True,
        preprocess_conf=args.preprocess_conf,
        preprocess_args={'train': True}  # Switch the mode of preprocessing
    )
    load_cv = LoadInputsAndTargets(
        mode='asr',
        load_output=True,
        preprocess_conf=args.preprocess_conf,
        preprocess_args={'train': False}  # Switch the mode of preprocessing
    )
    # hack to make batchsize argument as 1
    # actual bathsize is included in a list
    if args.n_iter_processes > 0:
        train_iter = ToggleableShufflingMultiprocessIterator(
            TransformDataset(train, load_tr),
            batch_size=1,
            n_processes=args.n_iter_processes,
            n_prefetch=8,
            maxtasksperchild=20,
            shuffle=not use_sortagrad)
        valid_iter = ToggleableShufflingMultiprocessIterator(
            TransformDataset(valid, load_cv),
            batch_size=1,
            repeat=False,
            shuffle=False,
            n_processes=args.n_iter_processes,
            n_prefetch=8,
            maxtasksperchild=20)
    else:
        train_iter = ToggleableShufflingSerialIterator(
            TransformDataset(train, load_tr),
            batch_size=1,
            shuffle=not use_sortagrad)
        valid_iter = ToggleableShufflingSerialIterator(TransformDataset(
            valid, load_cv),
                                                       batch_size=1,
                                                       repeat=False,
                                                       shuffle=False)

    # Set up a trainer
    updater = CustomUpdater(model,
                            args.grad_clip,
                            train_iter,
                            optimizer,
                            converter,
                            device,
                            args.ngpu,
                            args.grad_noise,
                            args.accum_grad,
                            use_apex=use_apex)
    trainer = training.Trainer(updater, (args.epochs, 'epoch'),
                               out=args.outdir)

    if use_sortagrad:
        trainer.extend(
            ShufflingEnabler([train_iter]),
            trigger=(args.sortagrad if args.sortagrad != -1 else args.epochs,
                     'epoch'))

    # Resume from a snapshot
    if args.resume:
        logging.info('resumed from %s' % args.resume)
        torch_resume(args.resume, trainer)

    # Evaluate the model with the test dataset for each epoch
    trainer.extend(
        CustomEvaluator(model, valid_iter, reporter, converter, device,
                        args.ngpu))

    # Save attention weight each epoch
    if args.num_save_attention > 0 and args.mtlalpha != 1.0:
        data = sorted(list(valid_json.items())[:args.num_save_attention],
                      key=lambda x: int(x[1]['input'][0]['shape'][1]),
                      reverse=True)
        if hasattr(model, "module"):
            att_vis_fn = model.module.calculate_all_attentions
            plot_class = model.module.attention_plot_class
        else:
            att_vis_fn = model.calculate_all_attentions
            plot_class = model.attention_plot_class
        att_reporter = plot_class(att_vis_fn,
                                  data,
                                  args.outdir + "/att_ws",
                                  converter=converter,
                                  transform=load_cv,
                                  device=device)
        trainer.extend(att_reporter, trigger=(1, 'epoch'))
    else:
        att_reporter = None

    # Make a plot for training and validation values
    trainer.extend(
        extensions.PlotReport([
            'main/loss', 'validation/main/loss', 'main/loss_ctc',
            'validation/main/loss_ctc', 'main/loss_att',
            'validation/main/loss_att'
        ],
                              'epoch',
                              file_name='loss.png'))
    trainer.extend(
        extensions.PlotReport(['main/acc', 'validation/main/acc'],
                              'epoch',
                              file_name='acc.png'))
    trainer.extend(
        extensions.PlotReport(['main/cer_ctc', 'validation/main/cer_ctc'],
                              'epoch',
                              file_name='cer.png'))

    # Save best models
    trainer.extend(
        snapshot_object(model, 'model.loss.best'),
        trigger=training.triggers.MinValueTrigger('validation/main/loss'))
    if mtl_mode != 'ctc':
        trainer.extend(
            snapshot_object(model, 'model.acc.best'),
            trigger=training.triggers.MaxValueTrigger('validation/main/acc'))

    # save snapshot which contains model and optimizer states
    trainer.extend(torch_snapshot(), trigger=(1, 'epoch'))

    # epsilon decay in the optimizer
    if args.opt == 'adadelta':
        if args.criterion == 'acc' and mtl_mode != 'ctc':
            trainer.extend(restore_snapshot(model,
                                            args.outdir + '/model.acc.best',
                                            load_fn=torch_load),
                           trigger=CompareValueTrigger(
                               'validation/main/acc', lambda best_value,
                               current_value: best_value > current_value))
            trainer.extend(adadelta_eps_decay(args.eps_decay),
                           trigger=CompareValueTrigger(
                               'validation/main/acc', lambda best_value,
                               current_value: best_value > current_value))
        elif args.criterion == 'loss':
            trainer.extend(restore_snapshot(model,
                                            args.outdir + '/model.loss.best',
                                            load_fn=torch_load),
                           trigger=CompareValueTrigger(
                               'validation/main/loss', lambda best_value,
                               current_value: best_value < current_value))
            trainer.extend(adadelta_eps_decay(args.eps_decay),
                           trigger=CompareValueTrigger(
                               'validation/main/loss', lambda best_value,
                               current_value: best_value < current_value))

    # Write a log of evaluation statistics for each epoch
    trainer.extend(
        extensions.LogReport(trigger=(args.report_interval_iters,
                                      'iteration')))
    report_keys = [
        'epoch', 'iteration', 'main/loss', 'main/loss_ctc', 'main/loss_att',
        'validation/main/loss', 'validation/main/loss_ctc',
        'validation/main/loss_att', 'main/acc', 'validation/main/acc',
        'main/cer_ctc', 'validation/main/cer_ctc', 'elapsed_time'
    ]
    if args.opt == 'adadelta':
        trainer.extend(extensions.observe_value(
            'eps', lambda trainer: trainer.updater.get_optimizer('main').
            param_groups[0]["eps"]),
                       trigger=(args.report_interval_iters, 'iteration'))
        report_keys.append('eps')
    if args.report_cer:
        report_keys.append('validation/main/cer')
    if args.report_wer:
        report_keys.append('validation/main/wer')
    trainer.extend(extensions.PrintReport(report_keys),
                   trigger=(args.report_interval_iters, 'iteration'))

    trainer.extend(
        extensions.ProgressBar(update_interval=args.report_interval_iters))
    set_early_stop(trainer, args)

    if args.tensorboard_dir is not None and args.tensorboard_dir != "":
        trainer.extend(TensorboardLogger(SummaryWriter(args.tensorboard_dir),
                                         att_reporter),
                       trigger=(args.report_interval_iters, "iteration"))
    # Run the training
    trainer.run()
    check_early_stop(trainer, args.epochs)
Exemple #23
0
def trans(args):
    """Decode with the given args.

    Args:
        args (namespace): The program arguments.

    """
    set_deterministic_pytorch(args)
    model, train_args = load_trained_model(args.model)
    assert isinstance(model, STInterface)
    # args.ctc_weight = 0.0
    model.trans_args = args

    # read rnnlm
    if args.rnnlm:
        rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
        if getattr(rnnlm_args, "model_module", "default") != "default":
            raise ValueError(
                "use '--api v2' option to decode with non-default language model"
            )
        rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(len(train_args.char_list), rnnlm_args.layer,
                             rnnlm_args.unit))
        torch_load(args.rnnlm, rnnlm)
        rnnlm.eval()
    else:
        rnnlm = None

    # gpu
    if args.ngpu == 1:
        gpu_id = list(range(args.ngpu))
        logging.info('gpu id: ' + str(gpu_id))
        model.cuda()
        if rnnlm:
            rnnlm.cuda()

    # read json data
    with open(args.trans_json, 'rb') as f:
        js = json.load(f)['utts']
    new_js = {}

    load_inputs_and_targets = LoadInputsAndTargets(
        mode='asr',
        load_output=False,
        sort_in_input_length=False,
        preprocess_conf=train_args.preprocess_conf
        if args.preprocess_conf is None else args.preprocess_conf,
        preprocess_args={'train': False})

    # Change to evaluation mode
    model.eval()

    if args.batchsize == 0:
        with torch.no_grad():
            for idx, name in enumerate(js.keys(), 1):
                logging.info('| (%d/%d) decoding ' + name, idx, len(js.keys()))
                batch = [(name, js[name])]
                feat = load_inputs_and_targets(batch)[0][0]
                if args.recog_and_trans:  # for cross
                    logging.info(
                        '***** Recognize and Translate simultaneously for cross decoders ******'
                    )
                    if args.beam_search_type == 'sum':
                        logging.info('=== Beam search by sum of scores ===')
                        nbest_hyps = model.recognize_and_translate_sum(
                            feat,
                            args,
                            train_args.char_list,
                            rnnlm,
                            decode_asr_weight=args.decode_asr_weight,
                            score_is_prob=args.score_is_prob,
                            ratio_diverse_st=args.ratio_diverse_st,
                            ratio_diverse_asr=args.ratio_diverse_asr,
                            debug=args.debug)
                        new_js[name] = add_results_to_json_st_asr(
                            js[name], nbest_hyps, train_args.char_list)
                    elif args.beam_search_type == 'sum-mono':
                        logging.info('=== Beam search by sum of scores ===')
                        nbest_hyps = model.recognize_and_translate_sum(
                            feat,
                            args,
                            train_args.char_list,
                            rnnlm,
                            decode_asr_weight=args.decode_asr_weight,
                            score_is_prob=args.score_is_prob,
                            ratio_diverse_st=args.ratio_diverse_st,
                            ratio_diverse_asr=args.ratio_diverse_asr,
                            debug=args.debug)
                        new_js[name] = add_results_to_json(
                            js[name], nbest_hyps, train_args.char_list)
                    elif args.beam_search_type == 'separate':
                        logging.info(
                            '=== Beam search using beam_cross hypothesis ===')
                        nbest_hyps, nbest_hyps_asr = model.recognize_and_translate_separate(
                            feat, args, train_args.char_list, rnnlm)
                        new_js[name] = add_results_to_json(
                            js[name], nbest_hyps, train_args.char_list)
                        new_js[name]['output'].append(
                            add_results_to_json(js[name],
                                                nbest_hyps_asr,
                                                train_args.char_list,
                                                output_idx=1)['output'][0])
                    else:
                        raise NotImplementedError
                elif args.recog and args.trans:
                    logging.info(
                        '***** Recognize and Translate separately ******')
                    nbest_hyps_asr = model.recognize(feat, args,
                                                     train_args.char_list,
                                                     rnnlm)
                    nbest_hyps = model.translate(feat, args,
                                                 train_args.char_list, rnnlm)
                    new_js[name] = add_results_to_json(js[name], nbest_hyps,
                                                       train_args.char_list)
                    new_js[name]['output'].append(
                        add_results_to_json(js[name],
                                            nbest_hyps_asr,
                                            train_args.char_list,
                                            output_idx=1)['output'][0])
                elif args.recog:
                    logging.info('***** Recognize ONLY ******')
                    nbest_hyps_asr = model.recognize(feat, args,
                                                     train_args.char_list,
                                                     rnnlm)
                    new_js[name] = add_results_to_json(js[name],
                                                       nbest_hyps_asr,
                                                       train_args.char_list)
                elif args.trans:
                    logging.info('***** Translate ONLY ******')
                    nbest_hyps = model.translate(feat, args,
                                                 train_args.char_list, rnnlm)
                    new_js[name] = add_results_to_json(js[name], nbest_hyps,
                                                       train_args.char_list)
                else:
                    raise NotImplementedError

    else:

        def grouper(n, iterable, fillvalue=None):
            kargs = [iter(iterable)] * n
            return zip_longest(*kargs, fillvalue=fillvalue)

        # sort data if batchsize > 1
        keys = list(js.keys())
        if args.batchsize > 1:
            feat_lens = [js[key]['input'][0]['shape'][0] for key in keys]
            sorted_index = sorted(range(len(feat_lens)),
                                  key=lambda i: -feat_lens[i])
            keys = [keys[i] for i in sorted_index]

        with torch.no_grad():
            for names in grouper(args.batchsize, keys, None):
                names = [name for name in names if name]
                batch = [(name, js[name]) for name in names]
                feats = load_inputs_and_targets(batch)[0]
                nbest_hyps = model.translate_batch(feats,
                                                   args,
                                                   train_args.char_list,
                                                   rnnlm=rnnlm)

                for i, nbest_hyp in enumerate(nbest_hyps):
                    name = names[i]
                    new_js[name] = add_results_to_json(js[name], nbest_hyp,
                                                       train_args.char_list)

    with open(args.result_label, 'wb') as f:
        f.write(
            json.dumps({
                'utts': new_js
            },
                       indent=4,
                       ensure_ascii=False,
                       sort_keys=True).encode('utf_8'))
Exemple #24
0
def ctc_align(args, device):
    """ESPnet-specific interface for CTC segmentation.

    Parses configuration, infers the CTC posterior probabilities,
    and then aligns start and end of utterances using CTC segmentation.
    Results are written to the output file given in the args.

    :param args: given configuration
    :param device: for inference; one of ['cuda', 'cpu']
    :return:  0 on success
    """
    model, train_args = load_trained_model(args.model)
    assert isinstance(model, ASRInterface)
    load_inputs_and_targets = LoadInputsAndTargets(
        mode="asr",
        load_output=True,
        sort_in_input_length=False,
        preprocess_conf=train_args.preprocess_conf
        if args.preprocess_conf is None
        else args.preprocess_conf,
        preprocess_args={"train": False},
    )
    logging.info(f"Decoding device={device}")
    # Warn for nets with high memory consumption on long audio files
    if hasattr(model, "enc"):
        encoder_module = model.enc.__class__.__module__
    elif hasattr(model, "encoder"):
        encoder_module = model.encoder.__class__.__module__
    else:
        encoder_module = "Unknown"
    logging.info(f"Encoder module: {encoder_module}")
    logging.info(f"CTC module:     {model.ctc.__class__.__module__}")
    if "rnn" not in encoder_module:
        logging.warning("No BLSTM model detected; memory consumption may be high.")
    model.to(device=device).eval()
    # read audio and text json data
    with open(args.data_json, "rb") as f:
        js = json.load(f)["utts"]
    with open(args.utt_text, "r", encoding="utf-8") as f:
        lines = f.readlines()
        i = 0
        text = {}
        segment_names = {}
        for name in js.keys():
            text_per_audio = []
            segment_names_per_audio = []
            while i < len(lines) and lines[i].startswith(name):
                text_per_audio.append(lines[i][lines[i].find(" ") + 1 :])
                segment_names_per_audio.append(lines[i][: lines[i].find(" ")])
                i += 1
            text[name] = text_per_audio
            segment_names[name] = segment_names_per_audio
    # apply configuration
    config = CtcSegmentationParameters()
    subsampling_factor = 1
    frame_duration_ms = 10
    if args.subsampling_factor is not None:
        subsampling_factor = args.subsampling_factor
    if args.frame_duration is not None:
        frame_duration_ms = args.frame_duration
    # Backwards compatibility to ctc_segmentation <= 1.5.3
    if hasattr(config, "index_duration"):
        config.index_duration = frame_duration_ms * subsampling_factor / 1000
    else:
        config.subsampling_factor = subsampling_factor
        config.frame_duration_ms = frame_duration_ms
    if args.min_window_size is not None:
        config.min_window_size = args.min_window_size
    if args.max_window_size is not None:
        config.max_window_size = args.max_window_size
    config.char_list = train_args.char_list
    if args.use_dict_blank is not None:
        logging.warning(
            "The option --use-dict-blank is deprecated. If needed,"
            " use --set-blank instead."
        )
    if args.set_blank is not None:
        config.blank = args.set_blank
    if args.replace_spaces_with_blanks is not None:
        if args.replace_spaces_with_blanks:
            config.replace_spaces_with_blanks = True
        else:
            config.replace_spaces_with_blanks = False
    if args.gratis_blank:
        config.blank_transition_cost_zero = True
    if config.blank_transition_cost_zero and args.replace_spaces_with_blanks:
        logging.error(
            "Blanks are inserted between words, and also the transition cost of blank"
            " is zero. This configuration may lead to misalignments!"
        )
    if args.scoring_length is not None:
        config.score_min_mean_over_L = args.scoring_length
    logging.info(f"Frame timings: {frame_duration_ms}ms * {subsampling_factor}")
    # Iterate over audio files to decode and align
    for idx, name in enumerate(js.keys(), 1):
        logging.info("(%d/%d) Aligning " + name, idx, len(js.keys()))
        batch = [(name, js[name])]
        feat, label = load_inputs_and_targets(batch)
        feat = feat[0]
        with torch.no_grad():
            # Encode input frames
            enc_output = model.encode(torch.as_tensor(feat).to(device)).unsqueeze(0)
            # Apply ctc layer to obtain log character probabilities
            lpz = model.ctc.log_softmax(enc_output)[0].cpu().numpy()
        # Prepare the text for aligning
        ground_truth_mat, utt_begin_indices = prepare_text(config, text[name])
        # Align using CTC segmentation
        timings, char_probs, state_list = ctc_segmentation(
            config, lpz, ground_truth_mat
        )
        logging.debug(f"state_list = {state_list}")
        # Obtain list of utterances with time intervals and confidence score
        segments = determine_utterance_segments(
            config, utt_begin_indices, char_probs, timings, text[name]
        )
        # Write to "segments" file
        for i, boundary in enumerate(segments):
            utt_segment = (
                f"{segment_names[name][i]} {name} {boundary[0]:.2f}"
                f" {boundary[1]:.2f} {boundary[2]:.9f}\n"
            )
            args.output.write(utt_segment)
    return 0
Exemple #25
0
def trans(args):
    """Decode with the given args.

    Args:
        args (namespace): The program arguments.

    """
    set_deterministic_pytorch(args)
    model, train_args = load_trained_model(args.model)
    # assert isinstance(model, STInterface)
    # TODO(hirofumi0810) fix this for after supporting Transformer
    args.ctc_weight = 0.0
    model.trans_args = args

    # read rnnlm
    if args.rnnlm:
        rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
        if getattr(rnnlm_args, "model_module", "default") != "default":
            raise ValueError(
                "use '--api v2' option to decode with non-default language model"
            )
        rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(len(train_args.char_list), rnnlm_args.layer,
                             rnnlm_args.unit))
        torch_load(args.rnnlm, rnnlm)
        rnnlm.eval()
    else:
        rnnlm = None

    if args.word_rnnlm:
        rnnlm_args = get_model_conf(args.word_rnnlm, args.word_rnnlm_conf)
        word_dict = rnnlm_args.char_list_dict
        char_dict = {x: i for i, x in enumerate(train_args.char_list)}
        word_rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(len(word_dict), rnnlm_args.layer,
                             rnnlm_args.unit))
        torch_load(args.word_rnnlm, word_rnnlm)
        word_rnnlm.eval()

        if rnnlm is not None:
            rnnlm = lm_pytorch.ClassifierWithState(
                extlm_pytorch.MultiLevelLM(word_rnnlm.predictor,
                                           rnnlm.predictor, word_dict,
                                           char_dict))
        else:
            rnnlm = lm_pytorch.ClassifierWithState(
                extlm_pytorch.LookAheadWordLM(word_rnnlm.predictor, word_dict,
                                              char_dict))

    # gpu
    if args.ngpu == 1:
        gpu_id = list(range(args.ngpu))
        logging.info('gpu id: ' + str(gpu_id))
        model.cuda()
        if rnnlm:
            rnnlm.cuda()

    # read json data
    with open(args.trans_json, 'rb') as f:
        js = json.load(f)['utts']
    new_js = {}

    load_inputs_and_targets = LoadInputsAndTargets(
        mode='asr',
        load_output=False,
        sort_in_input_length=False,
        preprocess_conf=train_args.preprocess_conf
        if args.preprocess_conf is None else args.preprocess_conf,
        preprocess_args={'train': False})

    if args.batchsize == 0:
        with torch.no_grad():
            for idx, name in enumerate(js.keys(), 1):
                logging.info('(%d/%d) decoding ' + name, idx, len(js.keys()))
                batch = [(name, js[name])]
                feat = load_inputs_and_targets(batch)[0][0]
                nbest_hyps = model.translate(feat, args, train_args.char_list,
                                             rnnlm)
                new_js[name] = add_results_to_json(js[name], nbest_hyps,
                                                   train_args.char_list)

    else:

        def grouper(n, iterable, fillvalue=None):
            kargs = [iter(iterable)] * n
            return zip_longest(*kargs, fillvalue=fillvalue)

        # sort data
        keys = list(js.keys())
        feat_lens = [js[key]['input'][0]['shape'][0] for key in keys]
        sorted_index = sorted(range(len(feat_lens)),
                              key=lambda i: -feat_lens[i])
        keys = [keys[i] for i in sorted_index]

        with torch.no_grad():
            for names in grouper(args.batchsize, keys, None):
                names = [name for name in names if name]
                batch = [(name, js[name]) for name in names]
                feats = load_inputs_and_targets(batch)[0]
                nbest_hyps = model.translate_batch(feats,
                                                   args,
                                                   train_args.char_list,
                                                   rnnlm=rnnlm)

                for i, nbest_hyp in enumerate(nbest_hyps):
                    name = names[i]
                    new_js[name] = add_results_to_json(js[name], nbest_hyp,
                                                       train_args.char_list)

    with open(args.result_label, 'wb') as f:
        f.write(
            json.dumps({
                'utts': new_js
            },
                       indent=4,
                       ensure_ascii=False,
                       sort_keys=True).encode('utf_8'))