Exemple #1
0
def filter_loops():

    loops = os.listdir(CHOPPED_PATH)
    proc_loops = os.listdir(EQ_NEW_PATH)

    lp_filter = es.LowPass(cutoffFrequency=90,sampleRate=sampleRate)
    bp_filter = es.BandPass(bandwidth=100 ,cutoffFrequency=280,sampleRate=sampleRate)
    hp_filter = es.HighPass(cutoffFrequency=9000,sampleRate=sampleRate)
    i=0
    for loop in loops:
        i=i+1
        if i % 50 == 0:
            print(str(i))
        if ".wav" in loop:
            if ("bpf_" + loop) not in proc_loops:
                audio_file=es.MonoLoader(filename=CHOPPED_PATH+loop,sampleRate=sampleRate)
                #lpf_audio = lp_filter(audio_file())
                bpf_audio = bp_filter(audio_file())
                #hpf_audio = hp_filter(audio_file())
                #sf.write(EQ_PATH + "lpf_" + loop, lpf_audio, sampleRate)
                sf.write(EQ_NEW_PATH + "bpf_" + loop, bpf_audio, sampleRate)
Exemple #2
0
def filter_loops_eval():
    loops_paths = [ "icassp2021_outputs/outputs_stft_coherence/",
                    "icassp2021_outputs/outputs_wavstft_coherence/"]
    
    lp_filter = es.LowPass(cutoffFrequency=90,sampleRate=sampleRate)
    bp_filter = es.BandPass(bandwidth=100 ,cutoffFrequency=280,sampleRate=sampleRate)
    hp_filter = es.HighPass(cutoffFrequency=9000,sampleRate=sampleRate)
    for path in loops_paths:
        loops = os.listdir(path)
        for loop in loops:
            if ".wav" in loop:
                audio_file=es.MonoLoader(filename=path+loop,sampleRate=sampleRate)
                if "lpf" in loop:
                    lpf_audio = lp_filter(audio_file())
                    sf.write(path + "eq/" + loop, lpf_audio, sampleRate)
                if "bpf" in loop:
                    bpf_audio = bp_filter(audio_file())
                    sf.write(path + "eq/" + loop, bpf_audio, sampleRate)
                if "hpf" in loop:
                    hpf_audio = hp_filter(audio_file())
                    sf.write(path + "eq/" + loop, hpf_audio, sampleRate)
    def onset_detection(audio):
        """
        Onset detection using Convolutional Neural Networks. This algorithm
        is developed by Sebastian Bock and Jan Schluter and implemented
        in Madmom MIR python library.
        :type audio: vector_real
        :param audio: input audio signal

        :rtype onset_times: vector_real
        :return onset_times: onset times in samples
        """
        audio_filt = es.BandPass(
            bandwidth=200, cutoffFrequency=300
        )(array(audio / max(audio)))

        onset_strength = onsets.CNNOnsetProcessor()(audio_filt)
        onset_frames = onsets.peak_picking(
            onset_strength, threshold=0.9, smooth=6
        )

        frame_rate = len(audio)/len(onset_strength)
        onset_times = onset_frames*frame_rate

        return onset_times
Exemple #4
0
def analysis_function(loop, sampleRate=16000):
    lp_filter = es.LowPass(cutoffFrequency=90, sampleRate=sampleRate)
    bp_filter = es.BandPass(bandwidth=20,
                            cutoffFrequency=280,
                            sampleRate=sampleRate)
    hp_filter = es.HighPass(cutoffFrequency=9000, sampleRate=sampleRate)

    [_, pattern] = ADT([loop],
                       output_act='yes',
                       tab='no',
                       save_dir="analysis/")
    pattern = np.array(pattern)[0]
    time_audio = np.linspace(0, float(29538) / 16000, 29538)
    time_act = np.linspace(0, float(29538) / 16000, 160)
    final_pattern = np.clip(
        np.array([
            interp1d(time_act, pattern[0, :, 0])(time_audio),
            interp1d(time_act, pattern[1, :, 0])(time_audio),
            interp1d(time_act, pattern[2, :, 0])(time_audio)
        ]).T, 0.0, 1.0)
    final_pattern = final_pattern / final_pattern.max(axis=0)
    final_pattern = np.expand_dims(final_pattern, 0)
    audio_file = es.MonoLoader(filename=loop, sampleRate=sampleRate)

    loop_basename = ntpath.basename(loop)
    lpf_audio = lp_filter(audio_file())
    bpf_audio = bp_filter(audio_file())
    hpf_audio = hp_filter(audio_file())

    sf.write("analysis/lpf_" + loop_basename, lpf_audio, sampleRate)
    sf.write("analysis/bpf_" + loop_basename, bpf_audio, sampleRate)
    sf.write("analysis/hpf_" + loop_basename, hpf_audio, sampleRate)

    unordered_kick_features = timbral_models.timbral_extractor(
        "analysis/lpf_" + loop_basename, clip_output=True)
    unordered_snare_features = timbral_models.timbral_extractor(
        "analysis/bpf_" + loop_basename, clip_output=True)
    unordered_hh_features = timbral_models.timbral_extractor("analysis/hpf_" +
                                                             loop_basename,
                                                             clip_output=True)

    features_kick = [
        unordered_kick_features['warmth'] / 69.738235,
        unordered_kick_features['roughness'] / 71.95989,
        unordered_kick_features['brightness'] / 82.336105,
        unordered_kick_features['hardness'] / 75.53646,
        unordered_kick_features['boominess'] / 71.00043,
        unordered_kick_features['depth'] / 100.0,
        unordered_kick_features['sharpness'] / 81.7323,
    ]

    features_snare = [
        unordered_snare_features['warmth'] / 69.57681,
        unordered_snare_features['roughness'] / 67.66642,
        unordered_snare_features['brightness'] / 80.19115,
        unordered_snare_features['hardness'] / 71.689445,
        unordered_snare_features['boominess'] / 61.422714,
        unordered_snare_features['depth'] / 100.0,
        unordered_snare_features['sharpness'] / 71.406494
    ]

    features_hh = [
        unordered_hh_features['warmth'] / 32.789112,
        unordered_hh_features['roughness'] / 1.0,
        unordered_hh_features['brightness'] / 85.24432,
        unordered_hh_features['hardness'] / 67.71172,
        unordered_hh_features['boominess'] / 2.491137,
        unordered_hh_features['depth'] / 0.5797179,
        unordered_hh_features['sharpness'] / 87.83693
    ]

    hpcp = file_to_hpcp(audio_file())

    #[69.57681, 67.66642, 80.19115, 71.689445, 61.422714, 100.0, 71.406494]
    #[32.789112, 1.0, 85.24432, 67.71172, 2.491137, 0.5797179, 87.83693]
    #[69.738235, 71.95989, 82.336105, 75.53646, 71.00043, 100.0, 81.7323]

    return final_pattern, hpcp, features_kick, features_snare, np.clip(
        features_hh, 0, 1)
Exemple #5
0
    def onsets_per_bands(self):
        '''
        Performs a band scale onset analysis of the drums
        :return: analysisResults:   an essentia pool containing the bandbased and broadband analysis of the drums
        '''

        # Pool to save results
        analysisResults = Pool()

        # save audio in pool
        analysisResults.add("audio", self.audio)
        drum_length = len(self.audio) / self.sampleRate

        # create grid
        beats, grid, onsets = self.onsets_broad_band()
        grid = array(grid)
        grid = grid[grid <= drum_length]
        analysisResults.add("beats", array(beats))
        analysisResults.add("grid", grid)
        analysisResults.add("onsets", array(onsets))
        grid_res = grid[1] - grid[0]

        # create filter specs (band band band pass filters)
        # ref: http://essentia.upf.edu/documentation/reference/streaming_bandBands.html
        '''
        f0s = np.array([0.0, 50.0, 100.0, 150.0, 200.0, 300.0, 400.0, 510.0,
                       630.0, 770.0, 920.0, 1080.0, 1270.0, 1480.0, 1720.0,
                       2000.0, 2320.0, 2700.0, 3150.0, 3700.0, 4400.0, 5300.0,
                       6400.0, 7700.0, 9500.0, 12000.0, 15500.0, 20500.0])


        f1s = np.array([50.0, 100.0, 150.0, 200.0, 300.0, 400.0, 510.0, 630.0,
                       770.0, 920.0, 1080.0, 1270.0, 1480.0, 1720.0,
                       2000.0, 2320.0, 2700.0, 3150.0, 3700.0, 4400.0, 5300.0,
                       6400.0, 7700.0, 9500.0, 12000.0, 15500.0, 20500.0, 27000.0])

        '''
        #http://www.music.mcgill.ca/~ich/classes/mumt614/similarity/herrera02automatic.pdf
        f0s = np.array([40., 70., 130., 160., 300., 5000., 7000., 10000.])
        f1s = np.array([70., 110., 145., 190., 400., 7000., 10000., 15000.])

        bandwidths = f1s - f0s
        cutoffFrequencies = (f0s + f1s) / 2.

        analysisResults.add(
            "x_time", array(np.arange(len(self.audio)) / self.sampleRate))
        analysisResults.add("f0s", array(f0s))
        analysisResults.add("f1s", array(f1s))
        analysisResults.add("bandwidths", array(bandwidths))
        analysisResults.add("cutoffFrequencies", array(cutoffFrequencies))

        # matrix of onsets: dimension 1: freq band dimension 2: onsets snapped to grid (1 where onset, 0 where no onset)
        drum_onsets_quantized = []

        # matrix of energies: dimension 1: freq band dimension 2: energies where 1 in drum_onsets_quantized
        drum_onset_energies_quantized = []

        # filter and find onsets
        for ix, f0 in enumerate(f0s):
            # Create band pass filters and filter the signal
            print("band", str(ix), "is being calculated")
            BPF = es.BandPass(bandwidth=bandwidths[ix],
                              cutoffFrequency=cutoffFrequencies[ix],
                              sampleRate=self.sampleRate)

            signal = BPF(array(self.audio))
            onsets = self.get_onsets(_audio=signal)
            analysisResults.add("audio_band_fc_" + str(cutoffFrequencies[ix]),
                                signal)

            #calculate energy of each onset (starting grid_res/4 before to after)
            energies = []
            EnergyEstimator = es.Energy()
            #maxEnergy = EnergyEstimator(array(np.hanning(int(grid_res/2.0*self.sampleRate)) *
            #                                  np.random(int(grid_res/2.0*self.sampleRate))))   # rough estimate
            '''
            # this part calculates energy within a small windowed frame around the onset
            max_Energy = 0
            for onset_ix, onset in enumerate(onsets):
                #ix0 = int(max(((onset - grid_res/16)*self.sampleRate), 0))
                #ix1 = int(min(((onset + grid_res/5.33)*self.sampleRate), len(signal)-1))
                ix0 = int(max((onset*self.sampleRate), 0))
                ix1 = int(max(ix0 + 512, len(signal)-2))
                sig = signal[ix0:ix1]
                sig = np.append(sig[::-1], sig[1:])
                if len(sig)>=.01*44100:
                    window = es.Windowing(size=int(len(sig)))
                    energies.append(EnergyEstimator(window(sig)))
                else:
                    onsets = np.delete(onsets,onset_ix)
            '''

            # this part calculates energy from one onset to half grid
            max_Energy = 0
            for onset_ix, onset in enumerate(onsets):
                # ix0 = int(max(((onset - grid_res/16)*self.sampleRate), 0))
                # ix1 = int(min(((onset + grid_res/5.33)*self.sampleRate), len(signal)-1))
                ix0 = int(max((onset * self.sampleRate), 0))
                ix1 = int(
                    max((onset * self.sampleRate + grid_res / 2),
                        len(signal) - 2))
                sig = signal[ix0:ix1]
                sig = np.append(sig[::-1], sig[1:])
                if len(sig) >= .01 * 44100:
                    #window = es.Windowing(size=int(len(sig)))
                    energies.append(EnergyEstimator(sig))
                else:
                    onsets = np.delete(onsets, onset_ix)

            max_Energy = max(max_Energy, max(np.array(energies)))

            analysisResults.add("onsets_band_fc_" + str(cutoffFrequencies[ix]),
                                onsets)

            analysisResults.add(
                "energies_band_fc_" + str(cutoffFrequencies[ix]), energies)
            quantized_onset_array_in_band, quantized_energy_array_in_band = self.quantize_onsets(
                onsets, energies, grid)

            drum_onsets_quantized.append(quantized_onset_array_in_band)
            drum_onset_energies_quantized.append(
                quantized_energy_array_in_band)

        analysisResults.add("onsets_quantized_matrix",
                            array(np.array(drum_onsets_quantized)))
        analysisResults.add(
            "energies_quantized_matrix",
            array(np.array(drum_onset_energies_quantized / max_Energy)))

        for ix, f0 in enumerate(f0s):
            analysisResults.add(
                "normalized_energies_band_fc_" + str(cutoffFrequencies[ix]),
                analysisResults["energies_band_fc_" +
                                str(cutoffFrequencies[ix])][0] / max_Energy)

        return analysisResults