def func_centr(audio, rate):
    spec = []
    for frame in FrameGenerator(audio,
                                frameSize=1024,
                                hopSize=450,
                                startFromZero=True):
        spec.append(Spectrum()(Windowing(type='hamming')(frame)))
    spec = np.array(spec)
    spec = spec.mean(axis=0)
    return (estd.Centroid(range=len(spec))(spec)) * rate / 1024.
Exemple #2
0
def spectralCentroid(audio,params):
    """ hop size, frame size, window type """
    hopSize, frameSize, wtype = params
    w = Windowing(type=wtype)
    spec = Spectrum()
    result = []
    centroid = ess.Centroid(range=int(44100/2))
    for frame in ess.FrameGenerator(audio, frameSize = frameSize, hopSize = hopSize):
        sf = spec(w(frame))
        result.append(centroid(sf))
    return np.asarray(result),hopSize
def analyze_misc(filename, segment_duration=20):

    # Compute replay gain and duration on the entire file, then load the
    # segment that is centered in time with replaygain applied
    audio = es.MonoLoader(filename=filename)()
    replaygain = es.ReplayGain()(audio)

    segment_start = (len(audio) / 44100 - segment_duration) / 2
    segment_end = segment_start + segment_duration

    if segment_start < 0 or segment_end > len(audio) / 44100:
        raise ValueError(
            'Segment duration is larger than the input audio duration')

    loader = es.EasyLoader(filename=filename,
                           replayGain=replaygain,
                           startTime=segment_start,
                           endTime=segment_end)

    windowing = es.Windowing(type='blackmanharris62')
    spectrum = es.Spectrum()
    powerspectrum = es.PowerSpectrum()
    centroid = es.Centroid()
    zcr = es.ZeroCrossingRate()
    rms = es.RMS()
    hfc = es.HFC()
    pool = essentia.Pool()

    audio = loader()
    for frame in es.FrameGenerator(audio, frameSize=2048, hopSize=1024):
        frame_spectrum = spectrum(windowing(frame))
        pool.add('rms', rms(frame))
        pool.add('rms_spectrum', rms(frame_spectrum))
        pool.add('hfc', hfc(frame_spectrum))
        pool.add('spectral_centroid', centroid(frame_spectrum))
        pool.add('zcr', zcr(frame))

    audio_st, sr, _, _, _, _ = es.AudioLoader(filename=filename)()
    # Ugly hack because we don't have a StereoResample
    left, right = es.StereoDemuxer()(audio_st)
    resampler = es.Resample(inputSampleRate=sr, outputSampleRate=44100)
    left = resampler(left)
    right = resampler(right)
    audio_st = es.StereoMuxer()(left, right)
    audio_st = es.StereoTrimmer(startTime=segment_start,
                                endTime=segment_end)(audio_st)
    ebu_momentary, _, _, _ = es.LoudnessEBUR128(hopSize=1024 / 44100,
                                                startAtZero=True)(audio_st)
    pool.set('ebu_momentary', ebu_momentary)

    return pool
def feature_extractor_standard(audio_in, frameSize, hopSize, aggLen):
    
    #print('Starting Feature Extraction for %s',filename)
    
    #creating algorithm objects and pool objects
    win=es.Windowing()
    spec=es.Spectrum()
    centroid = es.Centroid()
    flatness = es.Flatness()
    mfcc=es.MFCC(lowFrequencyBound=40)
    pitchYin = es.PitchYinFFT()
    
    #Compute features frame by frame
    mfcc_ftrsArray = []
    sCentroidArray = []
    sFlatnessArray = []
    pConfArray = []
    
    for frame in es.FrameGenerator(audio_in, frameSize = frameSize, hopSize = hopSize):
        spectrum = spec(win(frame))
        band_eneg, mfcc_ftrs=mfcc(spectrum)
        sCentroid = centroid(spectrum)
        sFlatness = flatness(spectrum)
        pitch, pitchConf = pitchYin(spectrum)
        #sFlux = flux(spectrum)
        
        mfcc_ftrsArray.append(mfcc_ftrs)
        sCentroidArray.append(sCentroid)
        sFlatnessArray.append(sFlatness)
        pConfArray.append(pitchConf)

    meanMFCC = []
    varMFCC = []
    meanCent = []
    varCent = []
    meanFlat = []
    varFlat = []
    meanPConf = []
    varPConf = []
    for ii in xrange(0, len(mfcc_ftrsArray)-aggLen,aggLen):
        meanMFCC.append(np.mean(mfcc_ftrsArray[ii:ii+aggLen],axis=0))
        varMFCC.append(np.var(mfcc_ftrsArray[ii:ii+aggLen],axis=0))
        meanCent.append(np.mean(sCentroidArray[ii:ii+aggLen]))
        varCent.append(np.var(sCentroidArray[ii:ii+aggLen]))
        meanFlat.append(np.mean(sFlatnessArray[ii:ii+aggLen]))
        varFlat.append(np.var(sFlatnessArray[ii:ii+aggLen]))
        meanPConf.append(np.mean(pConfArray[ii:ii+aggLen]))
        varPConf.append(np.var(pConfArray[ii:ii+aggLen]))

    return np.concatenate((np.array(meanMFCC), np.array(varMFCC), np.transpose(np.array(meanCent, ndmin=2)), np.transpose(np.array(varCent, ndmin=2)), np.transpose(np.array(meanFlat,ndmin=2)), np.transpose(np.array(varFlat,ndmin=2)), np.transpose(np.array(meanPConf,ndmin=2)), np.transpose(np.array(varPConf,ndmin=2))),axis=1)
Exemple #5
0
def _key_fnc(
    sample: NDArray[Float32],
    frequency_rate: int,
    windowfnc: Window,
    key_type: KeyFunction,
):
    """
    This function computes the key function,
    which in return calculates the keys for the [this.samples] map.
    To calculate the spectral centroid,
    the frequency_rate should be equal to the half of the samplerate.
    """

    if key_type == KeyFunction.CENTROID:
        return _get_centroid(
            sample,
            estd.Centroid(range=frequency_rate),
            estd.Spectrum(),
            estd.Windowing(type=windowfnc.value),
        )
    if key_type == KeyFunction.MAX:
        return _get_max(
            sample,
            estd.Spectrum(),
            estd.Windowing(type=windowfnc.value),
        )
    if key_type == KeyFunction.MFCC:
        return _get_mfcc(
            sample,
            estd.MFCC(),
            estd.Spectrum(),
            estd.Windowing(type=windowfnc.value),
        )
    if key_type == KeyFunction.MELBANDS:
        return _get_melbands(
            sample,
            estd.MFCC(),
            estd.Spectrum(),
            estd.Windowing(type=windowfnc.value),
        )
    if key_type == KeyFunction.MELBANDS_LOG:
        return estd.UnaryOperator(type="log")(_get_melbands(
            sample,
            estd.MFCC(),
            estd.Spectrum(),
            estd.Windowing(type=windowfnc.value),
        ))
    raise ValueError("Keyfunction is not defined!")
Exemple #6
0
def _get_features(audio_path):
    spectrum = ess.Spectrum(size=N)
    window = ess.Windowing(size=M, type='hann')
    centroid = ess.Centroid(range=1)
    x = ess.MonoLoader(filename=audio_path, sampleRate=fs)()
    spectrumcentroid = []

    for frame in ess.FrameGenerator(x,
                                    frameSize=M,
                                    hopSize=H,
                                    startFromZero=True):
        mX = spectrum(window(frame))
        centroidvalues = centroid(mX)
        spectrumcentroid.append(centroidvalues)
    spectrumcentroid = np.array(spectrumcentroid)

    headers = ['mean_centroid']
    features = [np.mean(spectrumcentroid)]
    #[np.mean(centroid)]

    #plt.figure(1, figsize=(9.5, 7))

    # plt.subplot(2,1,1)
    # plt.plot(np.arange(x.size)/float(fs), x, 'b')
    # plt.axis([0, x.size/float(fs), min(x), max(x)])
    # plt.ylabel('amplitude')
    # plt.title('x')

    # plt.subplot(2,1,2)
    # plt.plot(spectrumcentroid)
    # plt.ylabel('frequency (Hz)')
    # plt.title('time (sec)')
    # plt.autoscale(tight=True)
    # plt.tight_layout()
    # plt.savefig('centroid.png')
    # plt.show()

    return headers, features


# print get_features('../processed_data/ed/ED003/PS/PS_LLL_1.wav')
# print get_features('../../sms-tools/workspace/Tabla_test/ED003_PS_LLL_1.wav')
# print get_features('../../sms-tools/workspace/Tabla_test/sine500hz.wav')
Exemple #7
0
def sfxPitch(pool, namespace=''):
    sfxspace = 'sfx.'
    llspace = 'lowlevel.'
    if namespace:
        sfxspace = namespace + '.sfx.'
        llspace = namespace + '.lowlevel.'
    pitch = pool[llspace+'pitch']
    gen = streaming.VectorInput(pitch)
    maxtt = streaming.MaxToTotal()
    mintt = streaming.MinToTotal()
    amt = streaming.AfterMaxToBeforeMaxEnergyRatio()
    gen.data >> maxtt.envelope
    gen.data >> mintt.envelope
    gen.data >> amt.pitch
    maxtt.maxToTotal >> (pool, sfxspace+'pitch_max_to_total')
    mintt.minToTotal >> (pool, sfxspace+'pitch_min_to_total')
    amt.afterMaxToBeforeMaxEnergyRatio >> (pool, sfxspace+'pitch_after_max_to_before_max_energy_ratio')
    essentia.run(gen)

    pc = standard.Centroid(range=len(pitch)-1)(pitch)
    pool.set(sfxspace+'pitch_centroid', pc)
Exemple #8
0
import essentia
import essentia.standard as es
import numpy as np
import scipy.signal

FS = 44100

w = es.Windowing(type='hann')
spectrum = es.Spectrum()
centroid = es.Centroid()
moments = es.CentralMoments()

# Temporal descriptors
power = es.InstantPower()
log_attack_time = es.LogAttackTime()
effective_duration = es.EffectiveDuration()
auto_correlation = es.AutoCorrelation()
zero_crossing_rate = es.ZeroCrossingRate()

# Spectral descriptors
peak_freq = es.MaxMagFreq()
roll_off = es.RollOff()
flux = es.Flux()
flatness = es.Flatness()

# Harmonic descriptors
pitch = es.PitchYin(frameSize=1024)
spectral_peaks = es.SpectralPeaks(minFrequency=1e-5)
harmonic_peaks = es.HarmonicPeaks()
inharmonicity = es.Inharmonicity()
oer = es.OddToEvenHarmonicEnergyRatio()
Exemple #9
0
def compute(audio, pool, options):
    # analysis parameters
    sampleRate = options['sampleRate']
    frameSize = options['frameSize']
    hopSize = options['hopSize']
    windowType = options['windowType']

    # temporal descriptors
    lpc = ess.LPC(order=10, type='warped', sampleRate=sampleRate)
    zerocrossingrate = ess.ZeroCrossingRate()

    # frame algorithms
    frames = ess.FrameGenerator(audio=audio, frameSize=frameSize, hopSize=hopSize)
    window = ess.Windowing(size=frameSize, zeroPadding=0, type=windowType)
    spectrum = ess.Spectrum(size=frameSize)

    # spectral algorithms
    barkbands = ess.BarkBands(sampleRate=sampleRate)
    centralmoments = ess.CentralMoments()
    crest = ess.Crest()
    centroid = ess.Centroid()
    decrease = ess.Decrease()
    spectral_contrast = ess.SpectralContrast(frameSize=frameSize,
                                             sampleRate=sampleRate,
                                             numberBands=6,
                                             lowFrequencyBound=20,
                                             highFrequencyBound=11000,
                                             neighbourRatio=0.4,
                                             staticDistribution=0.15)
    distributionshape = ess.DistributionShape()
    energy = ess.Energy()
    # energyband_bass, energyband_middle and energyband_high parameters come from "standard" hi-fi equalizers
    energyband_bass = ess.EnergyBand(startCutoffFrequency=20.0, stopCutoffFrequency=150.0, sampleRate=sampleRate)
    energyband_middle_low = ess.EnergyBand(startCutoffFrequency=150.0, stopCutoffFrequency=800.0, sampleRate=sampleRate)
    energyband_middle_high = ess.EnergyBand(startCutoffFrequency=800.0, stopCutoffFrequency=4000.0,
                                            sampleRate=sampleRate)
    energyband_high = ess.EnergyBand(startCutoffFrequency=4000.0, stopCutoffFrequency=20000.0, sampleRate=sampleRate)
    flatnessdb = ess.FlatnessDB()
    flux = ess.Flux()
    harmonic_peaks = ess.HarmonicPeaks()
    hfc = ess.HFC()
    mfcc = ess.MFCC()
    rolloff = ess.RollOff()
    rms = ess.RMS()
    strongpeak = ess.StrongPeak()

    # pitch algorithms
    pitch_detection = ess.PitchYinFFT(frameSize=frameSize, sampleRate=sampleRate)
    pitch_salience = ess.PitchSalience()

    # dissonance
    spectral_peaks = ess.SpectralPeaks(sampleRate=sampleRate, orderBy='frequency')
    dissonance = ess.Dissonance()

    # spectral complexity
    # magnitudeThreshold = 0.005 is hardcoded for a "blackmanharris62" frame
    spectral_complexity = ess.SpectralComplexity(magnitudeThreshold=0.005)

    INFO('Computing Low-Level descriptors...')

    # used for a nice progress display
    total_frames = frames.num_frames()
    n_frames = 0
    start_of_frame = -frameSize * 0.5

    pitches, pitch_confidences = [], []

    progress = Progress(total=total_frames)

    #scPool = es.Pool()  # pool for spectral contrast

    for frame in frames:

        frameScope = [start_of_frame / sampleRate, (start_of_frame + frameSize) / sampleRate]
        # pool.setCurrentScope(frameScope)

        # silence rate
        # pool.add(namespace + '.' + 'silence_rate_60dB', es.isSilent(frame))
        pool.add(namespace + '.' + 'silence_rate_60dB', is_silent_threshold(frame, -60))
        pool.add(namespace + '.' + 'silence_rate_30dB', is_silent_threshold(frame, -30))
        pool.add(namespace + '.' + 'silence_rate_20dB', is_silent_threshold(frame, -20))

        if options['skipSilence'] and es.isSilent(frame):
            total_frames -= 1
            start_of_frame += hopSize
            continue

        # temporal descriptors
        pool.add(namespace + '.' + 'zerocrossingrate', zerocrossingrate(frame))
        (frame_lpc, frame_lpc_reflection) = lpc(frame)
        pool.add(namespace + '.' + 'temporal_lpc', frame_lpc)

        frame_windowed = window(frame)
        frame_spectrum = spectrum(frame_windowed)

        # spectrum-based descriptors
        power_spectrum = frame_spectrum ** 2
        pool.add(namespace + '.' + 'spectral_centroid', centroid(power_spectrum))
        pool.add(namespace + '.' + 'spectral_decrease', decrease(power_spectrum))
        pool.add(namespace + '.' + 'spectral_energy', energy(frame_spectrum))
        pool.add(namespace + '.' + 'spectral_energyband_low', energyband_bass(frame_spectrum))
        pool.add(namespace + '.' + 'spectral_energyband_middle_low', energyband_middle_low(frame_spectrum))
        pool.add(namespace + '.' + 'spectral_energyband_middle_high', energyband_middle_high(frame_spectrum))
        pool.add(namespace + '.' + 'spectral_energyband_high', energyband_high(frame_spectrum))
        pool.add(namespace + '.' + 'hfc', hfc(frame_spectrum))
        pool.add(namespace + '.' + 'spectral_rms', rms(frame_spectrum))
        pool.add(namespace + '.' + 'spectral_flux', flux(frame_spectrum))
        pool.add(namespace + '.' + 'spectral_rolloff', rolloff(frame_spectrum))
        pool.add(namespace + '.' + 'spectral_strongpeak', strongpeak(frame_spectrum))

        # central moments descriptors
        frame_centralmoments = centralmoments(power_spectrum)
        (frame_spread, frame_skewness, frame_kurtosis) = distributionshape(frame_centralmoments)
        pool.add(namespace + '.' + 'spectral_kurtosis', frame_kurtosis)
        pool.add(namespace + '.' + 'spectral_spread', frame_spread)
        pool.add(namespace + '.' + 'spectral_skewness', frame_skewness)

        # dissonance
        (frame_frequencies, frame_magnitudes) = spectral_peaks(frame_spectrum)
        frame_dissonance = dissonance(frame_frequencies, frame_magnitudes)
        pool.add(namespace + '.' + 'dissonance', frame_dissonance)

        # mfcc
        (frame_melbands, frame_mfcc) = mfcc(frame_spectrum)
        pool.add(namespace + '.' + 'mfcc', frame_mfcc)

        # spectral contrast
        (sc_coeffs, sc_valleys) = spectral_contrast(frame_spectrum)
        #scPool.add(namespace + '.' + 'sccoeffs', sc_coeffs)
        #scPool.add(namespace + '.' + 'scvalleys', sc_valleys)
        pool.add(namespace + '.' + 'spectral_contrast', sc_coeffs)


        # barkbands-based descriptors
        frame_barkbands = barkbands(frame_spectrum)
        pool.add(namespace + '.' + 'barkbands', frame_barkbands)
        pool.add(namespace + '.' + 'spectral_crest', crest(frame_barkbands))
        pool.add(namespace + '.' + 'spectral_flatness_db', flatnessdb(frame_barkbands))
        barkbands_centralmoments = ess.CentralMoments(range=len(frame_barkbands) - 1)
        (barkbands_spread, barkbands_skewness, barkbands_kurtosis) = distributionshape(
            barkbands_centralmoments(frame_barkbands))
        pool.add(namespace + '.' + 'barkbands_spread', barkbands_spread)
        pool.add(namespace + '.' + 'barkbands_skewness', barkbands_skewness)
        pool.add(namespace + '.' + 'barkbands_kurtosis', barkbands_kurtosis)

        # pitch descriptors
        frame_pitch, frame_pitch_confidence = pitch_detection(frame_spectrum)
        if frame_pitch > 0 and frame_pitch <= 20000.:
            pool.add(namespace + '.' + 'pitch', frame_pitch)
        pitches.append(frame_pitch)
        pitch_confidences.append(frame_pitch_confidence)
        pool.add(namespace + '.' + 'pitch_instantaneous_confidence', frame_pitch_confidence)

        frame_pitch_salience = pitch_salience(frame_spectrum[:-1])
        pool.add(namespace + '.' + 'pitch_salience', frame_pitch_salience)

        # spectral complexity
        pool.add(namespace + '.' + 'spectral_complexity', spectral_complexity(frame_spectrum))

        # display of progress report
        progress.update(n_frames)

        n_frames += 1
        start_of_frame += hopSize

    # if no 'temporal_zerocrossingrate' it means that this is a silent file
    if 'zerocrossingrate' not in descriptorNames(pool.descriptorNames(), namespace):
        raise ess.EssentiaError('This is a silent file!')

    #spectralContrastPCA(scPool, pool)

    # build pitch value histogram
    from math import log
    from numpy import bincount
    # convert from Hz to midi notes
    midipitches = []
    unknown = 0
    for freq in pitches:
        if freq > 0. and freq <= 12600:
            midipitches.append(12 * (log(freq / 6.875) / 0.69314718055995) - 3.)
        else:
            unknown += 1

    if len(midipitches) > 0:
        # compute histogram
        midipitchhist = bincount(midipitches)
        # set 0 midi pitch to be the number of pruned value
        midipitchhist[0] = unknown
        # normalise
        midipitchhist = [val / float(sum(midipitchhist)) for val in midipitchhist]
        # zero pad
        for i in range(128 - len(midipitchhist)): midipitchhist.append(0.0)
    else:
        midipitchhist = [0.] * 128
        midipitchhist[0] = 1.

    # pitchhist = ess.array(zip(range(len(midipitchhist)), midipitchhist))
    pool.add(namespace + '.' + 'spectral_pitch_histogram', midipitchhist)  # , pool.GlobalScope)

    # the code below is the same as the one above:
    # for note in midipitchhist:
    #    pool.add(namespace + '.' + 'spectral_pitch_histogram_values', note)
    #    print "midi note:", note

    pitch_centralmoments = ess.CentralMoments(range=len(midipitchhist) - 1)
    (pitch_histogram_spread, pitch_histogram_skewness, pitch_histogram_kurtosis) = distributionshape(
        pitch_centralmoments(midipitchhist))
    pool.add(namespace + '.' + 'spectral_pitch_histogram_spread', pitch_histogram_spread)  # , pool.GlobalScope)

    progress.finish()
    def temporal_centroid(self, audio):

        envelope = es.Envelope()
        temporal = es.Centroid(range=(float(len(audio) - 1) / 44100))

        return temporal(envelope(audio))
Exemple #11
0
import numpy as np
import matplotlib.pyplot as plt
import essentia.standard as ess

M = 1024
N = 1024
H = 512
fs = 44100
spectrum = ess.Spectrum(size=N)
window = ess.Windowing(size=M, type='hann')
centroid = ess.Centroid(range=fs / 2.0)
x = ess.MonoLoader(filename='../../../sounds/speech-male.wav', sampleRate=fs)()
centroids = []

for frame in ess.FrameGenerator(x, frameSize=M, hopSize=H, startFromZero=True):
    mX = spectrum(window(frame))
    centroid_val = centroid(mX)
    centroids.append(centroid_val)
centroids = np.array(centroids)

plt.figure(1, figsize=(9.5, 5))
plt.subplot(2, 1, 1)

plt.plot(np.arange(x.size) / float(fs), x)
plt.axis([0, x.size / float(fs), min(x), max(x)])
plt.ylabel('amplitude')
plt.title('x (speech-male.wav)')

plt.subplot(2, 1, 2)
frmTime = H * np.arange(centroids.size) / float(fs)
plt.plot(frmTime, centroids, 'g', lw=1.5)
    # This processing (top freq peaks) only works for single speaker case... need better features for multispeaker!
    # MFCC (or deep NN/automatic feature extraction) could be interesting

    inputSize = (data.shape[1] - 1) * 2

    M = 1024
    N = 1024
    H = 256
    fs = 8000
    spectrum = ess.Spectrum(size=N)
    window = ess.Windowing(size=M, type='hann')

    mfcc = ess.MFCC(numberCoefficients=7, inputSize=inputSize / 2 + 1)
    sc = ess.SpectralContrast(frameSize=inputSize)
    cent = ess.Centroid()
    """n_dim = 6
    all_obs = np.zeros((data.shape[0], n_dim))
    for r in range(data.shape[0]):
        #obs = np.zeros((n_dim, 1))
        _, t = peakfind(data[r, :], n_peaks=n_dim)
        all_obs[r, :] = t.copy()
    
    #all_obs = np.atleast_3d(all_obs)"""

    n_dim = 13
    all_obs = np.zeros((data.shape[0], n_dim))
    for r in range(data.shape[0]):
        mX = essentia.array(data[r, :])

        mfcc_bands, mfcc_coeffs = mfcc(mX)
Exemple #13
0
def reComputeDescriptors(inputAudioFile, outputJsonFile):

    """
    :param inputAudioFile:
    :param outputJsonFile:
    :return:
    """

    M = 2048
    N = 2048
    H = 1024
    fs = 44100

    W = 'blackmanharris62'


    #spectrum = ess.Spectrum(size=N)
    spectrum = ess.Spectrum()
    #window = ess.Windowing(size=M, type=W)
    window = ess.Windowing(type=W)
    #mfcc = ess.MFCC(numberCoefficients=12, inputSize=N/2+1)
    mfcc = ess.MFCC()

    spectral_peaks = ess.SpectralPeaks(minFrequency=1,
                                       maxFrequency=20000,
                                       maxPeaks=100,
                                       sampleRate=fs,
                                       magnitudeThreshold=0,
                                       orderBy="magnitude")

    dissonance = ess.Dissonance()

    #pitch_detection = ess.PitchYinFFT(frameSize=M, sampleRate=fs)
    pitch_detection = ess.PitchYinFFT()

    harmonic_peaks = ess.HarmonicPeaks()

    inharmonicity = ess.Inharmonicity()

    #spectral_contrast = ess.SpectralContrast(sampleRate=fs)
    spectral_contrast = ess.SpectralContrast()

    centroid = ess.Centroid()

    log_attack_time = ess.LogAttackTime()

    hfc = ess.HFC()

    # magnitudeThreshold = 0.005 is hardcoded for a "blackmanharris62" frame, see lowlevel.py
    spectral_complexity = ess.SpectralComplexity(magnitudeThreshold=0.005)


    energy = ess.Energy()

    x = ess.MonoLoader(filename=inputAudioFile, sampleRate=fs)()
    frames = ess.FrameGenerator(x, frameSize=M, hopSize=H, startFromZero=True)

    E = []
    numFrames = 0
    for frame in frames:
        numFrames += 1
        E_frame = energy(frame)
        E.append(E_frame)

    E_max = np.max(E)

    frames = ess.FrameGenerator(x, frameSize=M, hopSize=H, startFromZero=True)

    pools = [(t, es.Pool()) for t in dscr.threshold]
    for frame in frames:

        eNorm = energy(frame) / E_max

        threshPools = []
        for t, pool in pools:
            if eNorm >= t:
                threshPools.append(pool)

        mX = spectrum(window(frame))
        mfcc_bands, mfcc_coeffs = mfcc(mX)

        [pool.add('lowlevel.mfcc', mfcc_coeffs) for pool in threshPools]
        #[pool.add('lowlevel.mfcc_bands', mfcc_bands) for pool in threshPools]

        pfreq, pmag = spectral_peaks(mX)

        inds = pfreq.argsort()
        pfreq_sorted = pfreq[inds]
        pmag_sorted = pmag[inds]

        diss = dissonance(pfreq_sorted, pmag_sorted)
        [pool.add('lowlevel.dissonance', diss) for pool in threshPools]

        pitch, pitch_confidence = pitch_detection(mX)

        phfreq, phmag = harmonic_peaks(pfreq_sorted, pmag_sorted, pitch)
        if len(phfreq) > 1:
            inharm = inharmonicity(phfreq, phmag)
            [pool.add('sfx.inharmonicity', inharm) for pool in threshPools]

        sc_coeffs, sc_valleys = spectral_contrast(mX)
        [pool.add('lowlevel.spectral_contrast', sc_coeffs) for pool in threshPools]

        c = centroid(mX)
        [pool.add('lowlevel.spectral_centroid', c) for pool in threshPools]

        lat = log_attack_time(frame)
        [pool.add('sfx.logattacktime', lat) for pool in threshPools]

        h = hfc(mX)
        [pool.add('lowlevel.hfc', h) for pool in threshPools]

        spec_complx = spectral_complexity(mX)
        [pool.add('lowlevel.spectral_complexity', spec_complx) for pool in threshPools]


    #calc_Mean_Var = ess.PoolAggregator(defaultStats=['mean', 'var'])
    calc_Mean_Var = ess.PoolAggregator(defaultStats=['mean'])
    aggrPools = [calc_Mean_Var(pool) for t, pool in pools]

    features = {}
    [appendFeatures(features, aggrPools[i], ("ethc"+str(dscr.thresholdSelect[i]))) for i in range(len(aggrPools))]
    json.dump(features, open(outputJsonFile, 'w'))
Exemple #14
0
def reComputeDescriptors(inputAudioFile, outputJsonFile):
    """
    :param inputAudioFile:
    :param outputJsonFile:
    :return:
    """

    #help(ess.SpectralContrast)
    """ orig
    M = 1024
    N = 1024
    H = 512
    fs = 44100
    W = 'hann'
    """
    """ freesound
    Real sampleRate = 44100;
    int frameSize =   2048;
    int hopSize =     1024;
    int zeroPadding = 0;

    string silentFrames ="noise";
    string windowType = "blackmanharris62";

    // Silence Rate
    Real thresholds_dB[] = { -20, -30, -60 };
    vector<Real> thresholds(ARRAY_SIZE(thresholds_dB));
    for (uint i=0; i<thresholds.size(); i++) {
        thresholds[i] = db2lin(thresholds_dB[i]/2.0);
    }


    """

    M = 2048
    N = 2048
    H = 1024
    fs = 44100

    W = 'blackmanharris62'
    #silentFrames = "noise"
    #thresholds_dB = np.array([ -20, -30, -60 ])
    #thresholds = np.power (10.0, thresholds_dB / 20)

    #spectrum = ess.Spectrum(size=N)
    spectrum = ess.Spectrum()
    #window = ess.Windowing(size=M, type=W)
    window = ess.Windowing(type=W)
    #mfcc = ess.MFCC(numberCoefficients=12, inputSize=N/2+1)
    mfcc = ess.MFCC()

    spectral_peaks = ess.SpectralPeaks(minFrequency=1,
                                       maxFrequency=20000,
                                       maxPeaks=100,
                                       sampleRate=fs,
                                       magnitudeThreshold=0,
                                       orderBy="magnitude")

    dissonance = ess.Dissonance()

    #pitch_detection = ess.PitchYinFFT(frameSize=M, sampleRate=fs)
    pitch_detection = ess.PitchYinFFT()

    harmonic_peaks = ess.HarmonicPeaks()

    inharmonicity = ess.Inharmonicity()

    #spectral_contrast = ess.SpectralContrast(sampleRate=fs)
    spectral_contrast = ess.SpectralContrast()

    centroid = ess.Centroid()

    log_attack_time = ess.LogAttackTime()

    hfc = ess.HFC()

    energy = ess.Energy()

    x = ess.MonoLoader(filename=inputAudioFile, sampleRate=fs)()
    frames = ess.FrameGenerator(x, frameSize=M, hopSize=H, startFromZero=True)
    pool = es.Pool()
    for frame in frames:
        mX = spectrum(window(frame))
        mfcc_bands, mfcc_coeffs = mfcc(mX)

        pool.add('lowlevel.mfcc', mfcc_coeffs)
        pool.add('lowlevel.mfcc_bands', mfcc_bands)

        pfreq, pmag = spectral_peaks(mX)

        inds = pfreq.argsort()
        pfreq_sorted = pfreq[inds]
        pmag_sorted = pmag[inds]

        diss = dissonance(pfreq_sorted, pmag_sorted)
        pool.add('lowlevel.dissonance', diss)

        pitch, pitch_confidence = pitch_detection(mX)

        phfreq, phmag = harmonic_peaks(pfreq_sorted, pmag_sorted, pitch)
        if len(phfreq) > 1:
            inharm = inharmonicity(phfreq, phmag)
            pool.add('sfx.inharmonicity', inharm)

        sc_coeffs, sc_valleys = spectral_contrast(mX)
        pool.add('lowlevel.spectral_contrast', sc_coeffs)

        c = centroid(mX)
        pool.add('lowlevel.spectral_centroid', c)

        lat = log_attack_time(frame)
        pool.add('sfx.logattacktime', lat)

        h = hfc(mX)
        pool.add('lowlevel.hfc', h)

    calc_Mean_Var = ess.PoolAggregator(defaultStats=['mean', 'var'])
    aggrPool = calc_Mean_Var(pool)

    features = makeFeatures(aggrPool)
    json.dump(features, open(outputJsonFile, 'w'))
def compute_features(complete_path):
    result = []
    meta_result = []
    file_count = 0
    # for loop over files
    for file in os.listdir(complete_path):
        if file.endswith(".wav"):
            file_count+=1
            # print(file +' : ' + str(file_count))

            # load our audio into an array
            audio = es.MonoLoader(filename=complete_path + file, sampleRate=44100)()

            # create the pool and the necessary algorithms
            pool = essentia.Pool()
            window = es.Windowing()
            energy = es.Energy()
            spectrum = es.Spectrum()
            centroid = es.Centroid(range=22050)
            rolloff = es.RollOff()
            crest = es.Crest()
            speak = es.StrongPeak()
            rmse = es.RMS()
            mfcc = es.MFCC()
            flux = es.Flux()
            barkbands = es.BarkBands( sampleRate = 44100)
            zerocrossingrate = es.ZeroCrossingRate()

            meta = es.MetadataReader(filename=complete_path + file, failOnError=True)()
            pool_meta, duration, bitrate, samplerate, channels = meta[7:]
            
            # centralmoments = es.SpectralCentralMoments()
            # distributionshape = es.DistributionShape()

            # compute the centroid for all frames in our audio and add it to the pool
            for frame in es.FrameGenerator(audio, frameSize = 1024, hopSize = 512):
                frame_windowed = window(frame)
                frame_spectrum = spectrum(frame_windowed)
                
                c = centroid(frame_spectrum)
                pool.add('spectral.centroid', c)

                cr = crest(frame_spectrum)
                pool.add('spectral crest', cr)

                r = rolloff(frame_spectrum)
                pool.add('spectral rolloff', r)

                sp = speak(frame_spectrum)
                pool.add('strong peak', sp)

                rms = rmse(frame_spectrum)
                pool.add('RMS', rms)

                pool.add('spectral_energy', energy(frame_spectrum))
                # (frame_melbands, frame_mfcc) = mfcc(frame_spectrum)
                # pool.add('frame_MFCC', frame_mfcc)

                fl = flux(frame_spectrum)
                pool.add('spectral flux', fl)

                # bbands = barkbands(frame_spectrum)
                # pool.add('bark bands', bbands)

                zcr = zerocrossingrate(frame_spectrum)
                pool.add('zero crossing rate', zcr)

                # frame_centralmoments = centralmoments(power_spectrum)
                # (frame_spread, frame_skewness, frame_kurtosis) = distributionshape(frame_centralmoments)
                # pool.add('spectral_kurtosis', frame_kurtosis)
                # pool.add('spectral_spread', frame_spread)
                # pool.add('spectral_skewness', frame_skewness)

            # aggregate the results (find mean if needed)
            aggrpool = es.PoolAggregator(defaultStats = ['mean'])(pool) #,'stdev' ])(pool)
            
            pool_meta.set("duration", duration)
            pool_meta.set("filename", os.path.relpath(file))

            # write pools to lists
            pool_arr = pool_to_array(aggrpool)
            result.append(pool_arr)

            meta_arr = pool_to_array(pool_meta)
            meta_result.append(meta_arr)
         
    features_df = pd.DataFrame.from_records(result)
    features_df.columns = ['centroid', 'crest','roll off','strong peak','rms','energy','flux','zcr']
    
    meta_df = pd.DataFrame.from_records(meta_result)
    meta_df.columns = ['duration','filename','metadata.tags.comment']
    del meta_df['metadata.tags.comment']

    return features_df,meta_df
Exemple #16
0
def compute(audio, pool, options):
    INFO('Computing SFX descriptors...')

    # analysis parameters
    sampleRate = options['sampleRate']
    frameSize = options['frameSize']
    hopSize = options['hopSize']
    windowType = options['windowType']

    # frame algorithms
    frames = ess.FrameGenerator(audio=audio,
                                frameSize=frameSize,
                                hopSize=hopSize)
    window = ess.Windowing(size=frameSize, zeroPadding=0, type=windowType)
    spectrum = ess.Spectrum(size=frameSize)

    # pitch algorithm
    pitch_detection = ess.PitchYinFFT(frameSize=2048, sampleRate=sampleRate)

    # sfx descriptors
    spectral_peaks = ess.SpectralPeaks(sampleRate=sampleRate,
                                       orderBy='frequency')
    harmonic_peaks = ess.HarmonicPeaks()
    inharmonicity = ess.Inharmonicity()
    odd2evenharmonicenergyratio = ess.OddToEvenHarmonicEnergyRatio()
    tristimulus = ess.Tristimulus()

    # used for a nice progress display
    total_frames = frames.num_frames()
    n_frames = 0
    start_of_frame = -frameSize * 0.5
    progress = Progress(total=total_frames)

    for frame in frames:

        frameScope = [
            start_of_frame / sampleRate,
            (start_of_frame + frameSize) / sampleRate
        ]
        # pool.setCurrentScope(frameScope)

        if options['skipSilence'] and es.isSilent(frame):
            total_frames -= 1
            start_of_frame += hopSize
            continue

        frame_windowed = window(frame)
        frame_spectrum = spectrum(frame_windowed)

        # pitch descriptors
        frame_pitch, frame_pitch_confidence = pitch_detection(frame_spectrum)

        # spectral peaks based descriptors
        frame_frequencies, frame_magnitudes = spectral_peaks(frame_spectrum)

        # ERROR CORRECTION - hoinx 2015-12
        errIdx = np.where(frame_frequencies < 1)
        frame_frequencies = np.delete(frame_frequencies, errIdx)
        frame_magnitudes = np.delete(frame_magnitudes, errIdx)

        (frame_harmonic_frequencies,
         frame_harmonic_magnitudes) = harmonic_peaks(frame_frequencies,
                                                     frame_magnitudes,
                                                     frame_pitch)
        if len(frame_harmonic_frequencies) > 1:
            frame_inharmonicity = inharmonicity(frame_harmonic_frequencies,
                                                frame_harmonic_magnitudes)
            pool.add(namespace + '.' + 'inharmonicity', frame_inharmonicity)
            frame_tristimulus = tristimulus(frame_harmonic_frequencies,
                                            frame_harmonic_magnitudes)
            pool.add(namespace + '.' + 'tristimulus', frame_tristimulus)
            frame_odd2evenharmonicenergyratio = odd2evenharmonicenergyratio(
                frame_harmonic_frequencies, frame_harmonic_magnitudes)
            pool.add(namespace + '.' + 'odd2evenharmonicenergyratio',
                     frame_odd2evenharmonicenergyratio)

        # display of progress report
        progress.update(n_frames)

        n_frames += 1
        start_of_frame += hopSize

    envelope = ess.Envelope()
    file_envelope = envelope(audio)

    # temporal statistics
    decrease = ess.Decrease()
    pool.add(namespace + '.' + 'temporal_decrease',
             decrease(file_envelope))  # , pool.GlobalScope)

    centralmoments = ess.CentralMoments()
    file_centralmoments = centralmoments(file_envelope)

    distributionshape = ess.DistributionShape()
    (file_spread, file_skewness,
     file_kurtosis) = distributionshape(file_centralmoments)
    pool.add(namespace + '.' + 'temporal_spread',
             file_spread)  # , pool.GlobalScope)
    pool.add(namespace + '.' + 'temporal_skewness',
             file_skewness)  # , pool.GlobalScope)
    pool.add(namespace + '.' + 'temporal_kurtosis',
             file_kurtosis)  # , pool.GlobalScope)

    centroid = ess.Centroid()
    pool.add(namespace + '.' + 'temporal_centroid',
             centroid(file_envelope))  # , pool.GlobalScope)

    # effective duration
    effectiveduration = ess.EffectiveDuration()
    pool.add(namespace + '.' + 'effective_duration',
             effectiveduration(file_envelope))  # , pool.GlobalScope)

    # log attack time
    logattacktime = ess.LogAttackTime()
    pool.add(namespace + '.' + 'logattacktime',
             logattacktime(audio))  # , pool.GlobalScope)

    # strong decay
    strongdecay = ess.StrongDecay()
    pool.add(namespace + '.' + 'strongdecay',
             strongdecay(file_envelope))  # , pool.GlobalScope)

    # dynamic profile
    flatness = ess.FlatnessSFX()
    pool.add(namespace + '.' + 'flatness',
             flatness(file_envelope))  # , pool.GlobalScope)
    """
    # onsets number
    onsets_number = len(pool['rhythm.onset_times'][0])
    pool.add(namespace + '.' + 'onsets_number', onsets_number)  # , pool.GlobalScope)
    """

    # morphological descriptors
    max_to_total = ess.MaxToTotal()
    pool.add(namespace + '.' + 'max_to_total',
             max_to_total(file_envelope))  # , pool.GlobalScope)

    tc_to_total = ess.TCToTotal()
    pool.add(namespace + '.' + 'tc_to_total',
             tc_to_total(file_envelope))  # , pool.GlobalScope)

    derivativeSFX = ess.DerivativeSFX()
    (der_av_after_max, max_der_before_max) = derivativeSFX(file_envelope)
    pool.add(namespace + '.' + 'der_av_after_max',
             der_av_after_max)  # , pool.GlobalScope)
    pool.add(namespace + '.' + 'max_der_before_max',
             max_der_before_max)  # , pool.GlobalScope)

    # pitch profile
    """
    pitch = pool['lowlevel.pitch']

    if len(pitch) > 1:
        pool.add(namespace + '.' + 'pitch_max_to_total', max_to_total(pitch))  # , pool.GlobalScope)

        min_to_total = ess.MinToTotal()
        pool.add(namespace + '.' + 'pitch_min_to_total', min_to_total(pitch))  # , pool.GlobalScope)

        pitch_centroid = ess.Centroid(range=len(pitch) - 1)
        pool.add(namespace + '.' + 'pitch_centroid', pitch_centroid(pitch))  # , pool.GlobalScope)

        pitch_after_max_to_before_max_energy_ratio = ess.AfterMaxToBeforeMaxEnergyRatio()
        pool.add(namespace + '.' + 'pitch_after_max_to_before_max_energy_ratio',
                 pitch_after_max_to_before_max_energy_ratio(pitch))  # , pool.GlobalScope)

    else:
        pool.add(namespace + '.' + 'pitch_max_to_total', 0.0)  # , pool.GlobalScope)
        pool.add(namespace + '.' + 'pitch_min_to_total', 0.0)  # , pool.GlobalScope)
        pool.add(namespace + '.' + 'pitch_centroid', 0.0)  # , pool.GlobalScope)
        pool.add(namespace + '.' + 'pitch_after_max_to_before_max_energy_ratio', 0.0)  # , pool.GlobalScope)
    """

    progress.finish()