def build_shotclasstable(cross=True): from db.prozoneDB import DB c = DB.c conn = DB.conn idsX = np.array(get_features(["shotid"] + f,wo_penalties,only_fcb_shots)) X = idsX[:,1:] y = np.array(get_results(wo_penalties,only_fcb_shots)) if cross: prob = model.crosspredict(X,y) else: model.fit(X,y) prob = model.predict(X) #print prob c.execute("drop table if exists Shotvalue") c.execute("create table Shotvalue (shotid int,esv real)") for t in zip(idsX[:,0],prob): print(t) c.execute("insert into Shotvalue values (?,?)",t) conn.commit() conn.close() print("Shotclass table succcesfully built") print_scores(get_scores(y,prob)) plot_roc_curve(y,prob)
def comparemodels(cross=True): X = np.array(get_features(f,wo_penalties,only_fcb_shots)) X_alt = np.array(get_features(f_alt,wo_penalties,only_fcb_shots)) y = np.array(get_results(wo_penalties,only_fcb_shots)) if cross: prob = model.crosspredict(X,y) prob_alt = model_alt.crosspredict(X_alt,y) else: model.fit(X,y) model_alt.fit(X,y) prob = model.predict(X) prob_alt = model.predict(X) #compare_models(X, y, prob, prob_alt, f, f_plot=True) plot_roc_curve(y, prob, prob_alt)
def analyze_model(cross=True): X = np.array(get_features(f,wo_penalties,only_fcb_shots)) y = np.array(get_results(wo_penalties,only_fcb_shots)) if cross: prob = model.crosspredict(X,y) else: model.fit(X,y) prob = model.predict(X) # print prob # plt.hist(prob) # plt.show() #plot_model_analysis(X,y,prob,f) print_scores(get_scores(y,prob)) plot_roc_curve(y,prob)