Exemple #1
0
    def __init__(self,
                 domain,
                 v_p,
                 v_s,
                 wavelet,
                 source_tag,
                 source_vector=[0., 1.],
                 eps=0.,
                 delta=0.,
                 theta=0.,
                 rho=1.,
                 dt=None,
                 u0=None,
                 v0=None,
                 absorption_zone=300 * U.m,
                 absorption_cut=1e-2,
                 lumping=True):
        """
           initialize the TTI wave solver

           :param domain: domain of the problem
           :type domain: `Domain`
           :param v_p: vertical p-velocity field
           :type v_p: `escript.Scalar`
           :param v_s: vertical s-velocity field
           :type v_s: `escript.Scalar`
           :param wavelet: wavelet to describe the time evolution of source term
           :type wavelet: `Wavelet`
           :param source_tag: tag of the source location
           :type source_tag: 'str' or 'int'
           :param source_vector: source orientation vector
           :param eps: first Thompsen parameter
           :param delta: second Thompsen parameter
           :param theta: tilting (in Rad)
           :param rho: density
           :param dt: time step size. If not present a suitable time step size is calculated.
           :param u0: initial solution. If not present zero is used.
           :param v0: initial solution change rate. If not present zero is used.
           :param absorption_zone: thickness of absorption zone
           :param absorption_cut: boundary value of absorption decay factor
           :param lumping: if True mass matrix lumping is being used. This is accelerates the computing but introduces some diffusion.
           """
        cos = escript.cos
        sin = escript.sin
        DIM = domain.getDim()
        if not DIM == 2:
            raise ValueError("Only 2D is supported.")
        f = createAbsorptionLayerFunction(
            escript.Function(domain).getX(), absorption_zone, absorption_cut)

        v_p = v_p * f
        v_s = v_s * f

        if u0 == None:
            u0 = escript.Vector(0., escript.Solution(domain))
        else:
            u0 = escript.interpolate(p0, escript.Solution(domain))

        if v0 == None:
            v0 = escript.Vector(0., escript.Solution(domain))
        else:
            v0 = escript.interpolate(v0, escript.Solution(domain))

        if dt == None:
            dt = min((1. / 5.) * min(escript.inf(domain.getSize() / v_p),
                                     escript.inf(domain.getSize() / v_s)),
                     wavelet.getTimeScale())

        super(TTIWave, self).__init__(dt, u0=u0, v0=v0, t0=0.)

        self.__wavelet = wavelet

        self.__mypde = lpde.LinearPDESystem(domain)
        if lumping:
            self.__mypde.getSolverOptions().setSolverMethod(
                lpde.SolverOptions.HRZ_LUMPING)
        self.__mypde.setSymmetryOn()
        self.__mypde.setValue(D=rho * escript.kronecker(DIM),
                              X=self.__mypde.createCoefficient('X'))
        self.__source_tag = source_tag

        self.__r = escript.Vector(
            0, escript.DiracDeltaFunctions(self.__mypde.getDomain()))
        self.__r.setTaggedValue(self.__source_tag, source_vector)

        c0_33 = v_p**2 * rho
        c0_66 = v_s**2 * rho
        c0_11 = (1 + 2 * eps) * c0_33
        c0_13 = escript.sqrt(2 * c0_33 * (c0_33 - c0_66) * delta +
                             (c0_33 - c0_66)**2) - c0_66

        self.c11 = c0_11 * cos(theta)**4 - 2 * c0_13 * cos(
            theta)**4 + 2 * c0_13 * cos(theta)**2 + c0_33 * sin(
                theta)**4 - 4 * c0_66 * cos(theta)**4 + 4 * c0_66 * cos(
                    theta)**2
        self.c13 = -c0_11 * cos(theta)**4 + c0_11 * cos(
            theta)**2 + c0_13 * sin(theta)**4 + c0_13 * cos(
                theta)**4 - c0_33 * cos(theta)**4 + c0_33 * cos(
                    theta)**2 + 4 * c0_66 * cos(theta)**4 - 4 * c0_66 * cos(
                        theta)**2
        self.c16 = (-2 * c0_11 * cos(theta)**2 - 4 * c0_13 * sin(theta)**2 +
                    2 * c0_13 + 2 * c0_33 * sin(theta)**2 - 8 * c0_66 *
                    sin(theta)**2 + 4 * c0_66) * sin(theta) * cos(theta) / 2
        self.c33 = c0_11 * sin(theta)**4 - 2 * c0_13 * cos(
            theta)**4 + 2 * c0_13 * cos(theta)**2 + c0_33 * cos(
                theta)**4 - 4 * c0_66 * cos(theta)**4 + 4 * c0_66 * cos(
                    theta)**2
        self.c36 = (2 * c0_11 * cos(theta)**2 - 2 * c0_11 +
                    4 * c0_13 * sin(theta)**2 - 2 * c0_13 +
                    2 * c0_33 * cos(theta)**2 + 8 * c0_66 * sin(theta)**2 -
                    4 * c0_66) * sin(theta) * cos(theta) / 2
        self.c66 = -c0_11 * cos(theta)**4 + c0_11 * cos(
            theta)**2 + 2 * c0_13 * cos(theta)**4 - 2 * c0_13 * cos(
                theta)**2 - c0_33 * cos(theta)**4 + c0_33 * cos(
                    theta)**2 + c0_66 * sin(theta)**4 + 3 * c0_66 * cos(
                        theta)**4 - 2 * c0_66 * cos(theta)**2
Exemple #2
0
    def __init__(self,
                 domain,
                 v_p,
                 wavelet,
                 source_tag,
                 source_vector=[1., 0.],
                 eps=0.,
                 delta=0.,
                 azimuth=0.,
                 dt=None,
                 p0=None,
                 v0=None,
                 absorption_zone=300 * U.m,
                 absorption_cut=1e-2,
                 lumping=True):
        """
           initialize the HTI wave solver

           :param domain: domain of the problem
           :type domain: `Doamin`
           :param v_p: vertical p-velocity field
           :type v_p: `escript.Scalar`
           :param v_s: vertical s-velocity field
           :type v_s: `escript.Scalar`
           :param wavelet: wavelet to describe the time evolution of source term
           :type wavelet: `Wavelet`
           :param source_tag: tag of the source location
           :type source_tag: 'str' or 'int'
           :param source_vector: source orientation vector
           :param eps: first Thompsen parameter
           :param azimuth: azimuth (rotation around verticle axis)
           :param gamma: third Thompsen parameter
           :param rho: density
           :param dt: time step size. If not present a suitable time step size is calculated.
           :param p0: initial solution (Q(t=0), P(t=0)). If not present zero is used.
           :param v0: initial solution change rate. If not present zero is used.
           :param absorption_zone: thickness of absorption zone
           :param absorption_cut: boundary value of absorption decay factor
           :param lumping: if True mass matrix lumping is being used. This is accelerates the computing but introduces some diffusion.
           """
        DIM = domain.getDim()
        f = createAbsorptionLayerFunction(v_p.getFunctionSpace().getX(),
                                          absorption_zone, absorption_cut)

        self.v2_p = v_p**2
        self.v2_t = self.v2_p * escript.sqrt(1 + 2 * delta)
        self.v2_n = self.v2_p * (1 + 2 * eps)

        if p0 == None:
            p0 = escript.Data(0., (2, ), escript.Solution(domain))
        else:
            p0 = escript.interpolate(p0, escript.Solution(domain))

        if v0 == None:
            v0 = escript.Data(0., (2, ), escript.Solution(domain))
        else:
            v0 = escript.interpolate(v0, escript.Solution(domain))

        if dt == None:
            dt = min(
                min(escript.inf(domain.getSize() / escript.sqrt(self.v2_p)),
                    escript.inf(domain.getSize() / escript.sqrt(self.v2_t)),
                    escript.inf(domain.getSize() / escript.sqrt(self.v2_n))),
                wavelet.getTimeScale()) * 0.2

        super(SonicHTIWave, self).__init__(dt, u0=p0, v0=v0, t0=0.)

        self.__wavelet = wavelet

        self.__mypde = lpde.LinearPDESystem(domain)
        if lumping:
            self.__mypde.getSolverOptions().setSolverMethod(
                lpde.SolverOptions.HRZ_LUMPING)
        self.__mypde.setSymmetryOn()
        self.__mypde.setValue(D=escript.kronecker(2),
                              X=self.__mypde.createCoefficient('X'))
        self.__source_tag = source_tag

        self.__r = escript.Vector(
            0, escript.DiracDeltaFunctions(self.__mypde.getDomain()))
        self.__r.setTaggedValue(self.__source_tag, source_vector)
Exemple #3
0
    def __init__(self,
                 domain,
                 v_p,
                 v_s,
                 wavelet,
                 source_tag,
                 source_vector=[1., 0., 0.],
                 eps=0.,
                 gamma=0.,
                 delta=0.,
                 rho=1.,
                 dt=None,
                 u0=None,
                 v0=None,
                 absorption_zone=None,
                 absorption_cut=1e-2,
                 lumping=True,
                 disable_fast_assemblers=False):
        """
       initialize the VTI wave solver

       :param domain: domain of the problem
       :type domain: `Domain`
       :param v_p: vertical p-velocity field
       :type v_p: `escript.Scalar`
       :param v_s: vertical s-velocity field
       :type v_s: `escript.Scalar`
       :param wavelet: wavelet to describe the time evolution of source term
       :type wavelet: `Wavelet`
       :param source_tag: tag of the source location
       :type source_tag: 'str' or 'int'
       :param source_vector: source orientation vector
       :param eps: first Thompsen parameter
       :param delta: second Thompsen parameter
       :param gamma: third Thompsen parameter
       :param rho: density
       :param dt: time step size. If not present a suitable time step size is calculated.
       :param u0: initial solution. If not present zero is used.
       :param v0: initial solution change rate. If not present zero is used.
       :param absorption_zone: thickness of absorption zone
       :param absorption_cut: boundary value of absorption decay factor
       :param lumping: if True mass matrix lumping is being used. This is accelerates the computing but introduces some diffusion.
       :param disable_fast_assemblers: if True, forces use of slower and more general PDE assemblers
       """
        DIM = domain.getDim()
        self.fastAssembler = hasattr(
            domain, "createAssembler") and not disable_fast_assemblers
        f = createAbsorptionLayerFunction(v_p.getFunctionSpace().getX(),
                                          absorption_zone, absorption_cut)

        v_p = v_p * f
        v_s = v_s * f

        if u0 == None:
            u0 = escript.Vector(0., escript.Solution(domain))
        else:
            u0 = escript.interpolate(p0, escript.Solution(domain))

        if v0 == None:
            v0 = escript.Vector(0., escript.Solution(domain))
        else:
            v0 = escript.interpolate(v0, escript.Solution(domain))

        if dt == None:
            dt = min((1. / 5.) * min(escript.inf(domain.getSize() / v_p),
                                     escript.inf(domain.getSize() / v_s)),
                     wavelet.getTimeScale())

        super(HTIWave, self).__init__(dt, u0=u0, v0=v0, t0=0.)

        self.__wavelet = wavelet

        self.c33 = v_p**2 * rho
        self.c44 = v_s**2 * rho
        self.c11 = (1 + 2 * eps) * self.c33
        self.c66 = (1 + 2 * gamma) * self.c44
        self.c13 = escript.sqrt(2 * self.c33 * (self.c33 - self.c44) * delta +
                                (self.c33 - self.c44)**2) - self.c44
        self.c23 = self.c33 - 2 * self.c66

        if self.fastAssembler:
            C = [("c11", self.c11), ("c23", self.c23), ("c13", self.c13),
                 ("c33", self.c33), ("c44", self.c44), ("c66", self.c66)]
            if "speckley" in domain.getDescription().lower():
                C = [(n, escript.interpolate(d,
                                             escript.ReducedFunction(domain)))
                     for n, d in C]
            self.__mypde = lpde.WavePDE(domain, C)
        else:
            self.__mypde = lpde.LinearPDESystem(domain)
            self.__mypde.setValue(X=self.__mypde.createCoefficient('X'))

        if lumping:
            self.__mypde.getSolverOptions().setSolverMethod(
                lpde.SolverOptions.HRZ_LUMPING)
        self.__mypde.setSymmetryOn()
        self.__mypde.setValue(D=rho * escript.kronecker(DIM))
        self.__source_tag = source_tag

        if DIM == 2:
            source_vector = [source_vector[0], source_vector[2]]

        self.__r = escript.Vector(
            0, escript.DiracDeltaFunctions(self.__mypde.getDomain()))
        self.__r.setTaggedValue(self.__source_tag, source_vector)