Exemple #1
0
    def generate_slow_HTI_PDE_solution(self):
        pde = LinearPDESystem(self.domain)
        pde.getSolverOptions().setSolverMethod(SolverOptions.HRZ_LUMPING)
        pde.setSymmetryOn()

        dim = pde.getDim()
        X = self.domain.getX()
        y = Vector([2., 3., 4.][:dim], DiracDeltaFunctions(self.domain))
        du = grad(X * X)
        D = 2500. * kronecker(dim)
        pde.setValue(X=pde.createCoefficient('X'))
        sigma = pde.getCoefficient('X')
        if dim == 3:
            e11 = du[0, 0]
            e22 = du[1, 1]
            e33 = du[2, 2]

            sigma[0, 0] = self.c11 * e11 + self.c13 * (e22 + e33)
            sigma[1, 1] = self.c13 * e11 + self.c33 * e22 + self.c23 * e33
            sigma[2, 2] = self.c13 * e11 + self.c23 * e22 + self.c33 * e33

            s = self.c44 * (du[2, 1] + du[1, 2])
            sigma[1, 2] = s
            sigma[2, 1] = s

            s = self.c66 * (du[2, 0] + du[0, 2])
            sigma[0, 2] = s
            sigma[2, 0] = s

            s = self.c66 * (du[0, 1] + du[1, 0])
            sigma[0, 1] = s
            sigma[1, 0] = s

        else:
            e11 = du[0, 0]
            e22 = du[1, 1]
            sigma[0, 0] = self.c11 * e11 + self.c13 * e22
            sigma[1, 1] = self.c13 * e11 + self.c33 * e22

            s = self.c66 * (du[1, 0] + du[0, 1])
            sigma[0, 1] = s
            sigma[1, 0] = s

        pde.setValue(D=D, X=-sigma, y_dirac=y)
        return pde.getSolution()
    def generate_slow_HTI_PDE_solution(self, domain):
        pde = LinearPDESystem(domain)
        pde.getSolverOptions().setSolverMethod(SolverOptions.HRZ_LUMPING)
        pde.setSymmetryOn()

        dim = pde.getDim()
        X = domain.getX()
        y = Vector([2.,3.,4.][:dim], DiracDeltaFunctions(domain))
        du = grad(X*X)
        D = 2500.*kronecker(dim)
        pde.setValue(X=pde.createCoefficient('X'))
        sigma = pde.getCoefficient('X')
        if dim == 3:
            e11=du[0,0]
            e22=du[1,1]
            e33=du[2,2]

            sigma[0,0]=self.c11*e11+self.c13*(e22+e33)
            sigma[1,1]=self.c13*e11+self.c33*e22+self.c23*e33
            sigma[2,2]=self.c13*e11+self.c23*e22+self.c33*e33

            s=self.c44*(du[2,1]+du[1,2])
            sigma[1,2]=s
            sigma[2,1]=s

            s=self.c66*(du[2,0]+du[0,2])
            sigma[0,2]=s
            sigma[2,0]=s

            s=self.c66*(du[0,1]+du[1,0])
            sigma[0,1]=s
            sigma[1,0]=s

        else:
            e11=du[0,0]
            e22=du[1,1]
            sigma[0,0]=self.c11*e11+self.c13*e22
            sigma[1,1]=self.c13*e11+self.c33*e22

            s=self.c66*(du[1,0]+du[0,1])
            sigma[0,1]=s
            sigma[1,0]=s

        pde.setValue(D=D, X=-sigma, y_dirac=y)
        return pde.getSolution()
class Subsidence(ForwardModel):
    """
    Forward Model for subsidence inversion minimizing
    integrate( (inner(w,u)-d)**2)
    where u is the surface displacement due to a pressure change P
    """
    def __init__(self, domain, w, d, lam, mu, coordinates=None, tol=1e-8):
        """
        Creates a new subsidence on the given domain

        :param domain: domain of the model
        :type domain: `Domain`
        :param w: data weighting factors and direction
        :type w: ``Vector`` with ``FunctionOnBoundary``
        :param d: displacement measured at surface
        :type d: ``Scalar`` with ``FunctionOnBoundary``
        :param lam: 1st Lame coefficient
        :type lam: ``Scalar`` with ``Function``
        :param lam: 2st Lame coefficient/Shear modulus
        :type lam: ``Scalar`` with ``Function``
        :param coordinates: defines coordinate system to be used (not supported yet))
        :type coordinates: `ReferenceSystem` or `SpatialCoordinateTransformation`
        :param tol: tolerance of underlying PDE
        :type tol: positive ``float``
        """
        super(Subsidence, self).__init__()
        DIM = domain.getDim()

        self.__pde = LinearPDESystem(domain)
        self.__pde.setSymmetryOn()
        self.__pde.getSolverOptions().setTolerance(tol)
        #... set coefficients ...
        C = self.__pde.createCoefficient('A')
        for i in range(DIM):
            for j in range(DIM):
                C[i, i, j, j] += lam
                C[i, j, i, j] += mu
                C[i, j, j, i] += mu
        x = domain.getX()
        msk = whereZero(x[DIM - 1]) * kronecker(DIM)[DIM - 1]
        for i in range(DIM - 1):
            xi = x[i]
            msk += (whereZero(xi - inf(xi)) +
                    whereZero(xi - sup(xi))) * kronecker(DIM)[i]
        self.__pde.setValue(A=C, q=msk)

        self.__w = interpolate(w, FunctionOnBoundary(domain))
        self.__d = interpolate(d, FunctionOnBoundary(domain))

    def rescaleWeights(self, scale=1., P_scale=1.):
        """
        rescales the weights
        
        :param scale: scale of data weighting factors
        :type scale: positive ``float``
        :param P_scale: scale of pressure increment
        :type P_scale: ``Scalar``
        """
        pass

    def getArguments(self, P):
        """
        Returns precomputed values shared by `getDefect()` and `getGradient()`.

        :param P: pressure
        :type P: ``Scalar``
        :return: displacement u
        :rtype: ``Vector``
        """
        DIM = self.__pde.getDim()
        self.__pde.setValue(y=Data(), X=P * kronecker(DIM))
        u = self.__pde.getSolution()
        return u,

    def getDefect(self, P, u):
        """
        Returns the value of the defect.

        :param P: pressure
        :type P: ``Scalar``
        :param u: corresponding displacement
        :type u: ``Vector``
        :rtype: ``float``
        """
        return 0.5 * integrate((inner(u, self.__w) - self.__d)**2)

    def getGradient(self, P, u):
        """
        Returns the gradient of the defect with respect to susceptibility.

        :param P: pressure
        :type P: ``Scalar``
        :param u: corresponding displacement
        :type u: ``Vector``
        :rtype: ``Scalar``
        """
        d = inner(u, self.__w) - self.__d
        self.__pde.setValue(y=d * self.__w, X=Data())
        ustar = self.__pde.getSolution()

        return div(ustar)
Exemple #4
0
        print("\txi = [ %e, %e]" % (inf(xi), sup(xi)))
        print("\tgamma = [ %e, %e]" % (inf(gamma), sup(gamma)))

        if inf(mu_eff) < 0:
            raise ValueError("mu_eff<0")

        sigma = 2 * mu_eff * eps_e + lame_eff * trace(eps_e) * k3

        if UPDATE_OPERATOR:
            pde.setValue(A=mu_eff * (swap_axes(k3Xk3, 0, 3) + swap_axes(k3Xk3, 1, 3)) + lame_eff * k3Xk3)
        else:
            pde.setValue(A=mu * (swap_axes(k3Xk3, 0, 3) + swap_axes(k3Xk3, 1, 3)) + lame * k3Xk3)

        pde.setValue(X=-sigma, y=SIGMA_N * dom.getNormal(), r=dt * v0 - du)

        ddu = pde.getSolution()
        deps += symmetric(grad(ddu))
        du += ddu
        norm_ddu = Lsup(ddu)
        norm_du = Lsup(du)
        print("\t displacement change update = %e of %e" % (norm_ddu, norm_du))
        iter += 1
    print("deps =", inf(deps), sup(deps))
    u += du
    n += 1
    t += dt
    # =========== this is a test for triaxial test ===========================
    print("\tYYY t = ", t)
    a = (SIGMA_N - lame_eff * VMAX * t) / (lame_eff + mu_eff) / 2
    # =========== this is a test for triaxial test ===========================
    print("\tYYY a = ", meanValue(a))
    r_b=FunctionOnBoundary(dom).getX()[0]
    print("volume : ",integrate(r))
    #
    #  step 1:
    #
    # calculate normal 
    n_d=dom.getNormal()
    t_d=matrixmult(numpy.array([[0.,-1.],[1.,0]]),n_d)
    sigma_d=(sign(inner(t_d,U))*alpha_w*t_d-n_d)*Pen*clip(inner(n_d,U),0.)
    print("sigma_d =",inf(sigma_d),sup(sigma_d))

    momentumStep1.setValue(D=r*ro*kronecker(dom),
                           Y=r*ro*U+dt*r*[0.,-ro*g], 
                           X=-dt*r*(dev_stress-teta3*p*kronecker(dom)), 
                           y=sigma_d*face_mask*r_b)
    U_star=momentumStep1.getSolution()
    saveVTK("u.vtu",u=U_star,u0=U)
    #
    #  step 2:
    #
    # U2=U+teta1*(U_star-U)
    U2=U+teta1*U_star
    gg2=grad(U2)
    div_U2=gg2[0,0]+gg2[1,1]+U2[0]/r

    grad_p=grad(p)

    pressureStep2.setValue(A=r*dt*B*teta1*teta2/ro*dt*kronecker(dom), 
                           D=r,                            
                           Y=-dt*B*r*div_U2,
                           X=-r*B*dt**2/ro*teta1*(1-teta3)*grad_p)
Exemple #6
0
    r_b=FunctionOnBoundary(dom).getX()[0]
    print("volume : ",integrate(r))
    #
    #  step 1:
    #
    # calculate normal 
    n_d=dom.getNormal()
    t_d=matrixmult(numpy.array([[0.,-1.],[1.,0]]),n_d)
    sigma_d=(sign(inner(t_d,U))*alpha_w*t_d-n_d)*Pen*clip(inner(n_d,U),0.)
    print("sigma_d =",inf(sigma_d),sup(sigma_d))

    momentumStep1.setValue(D=r*ro*kronecker(dom),
                           Y=r*ro*U+dt*r*[0.,-ro*g], 
                           X=-dt*r*(dev_stress-teta3*p*kronecker(dom)), 
                           y=sigma_d*face_mask*r_b)
    U_star=momentumStep1.getSolution()
    saveVTK("u.vtu",u=U_star,u0=U)
    #
    #  step 2:
    #
    # U2=U+teta1*(U_star-U)
    U2=U+teta1*U_star
    gg2=grad(U2)
    div_U2=gg2[0,0]+gg2[1,1]+U2[0]/r

    grad_p=grad(p)

    pressureStep2.setValue(A=r*dt*B*teta1*teta2/ro*dt*kronecker(dom), 
                           D=r,                            
                           Y=-dt*B*r*div_U2,
                           X=-r*B*dt**2/ro*teta1*(1-teta3)*grad_p)
Exemple #7
0
class SonicHTIWave(WaveBase):
        """
        Solving the HTI wave equation (along the x_0 axis) with azimuth (rotation around verticle axis)
        under the assumption of zero shear wave velocities
        The unknowns are the transversal (along x_0) and vertial stress (Q, P)

        :note: In case of a two dimensional domain the second spatial dimenion is depth.
        """
        def __init__(self, domain, v_p, wavelet, source_tag, source_vector = [1.,0.], eps=0., delta=0., azimuth=0.,
                     dt=None, p0=None, v0=None, absorption_zone=300*U.m, absorption_cut=1e-2, lumping=True):
           """
           initialize the HTI wave solver

           :param domain: domain of the problem
           :type domain: `Doamin`
           :param v_p: vertical p-velocity field
           :type v_p: `Scalar`
           :param v_s: vertical s-velocity field
           :type v_s: `Scalar`
           :param wavelet: wavelet to describe the time evolution of source term
           :type wavelet: `Wavelet`
           :param source_tag: tag of the source location
           :type source_tag: 'str' or 'int'
           :param source_vector: source orientation vector
           :param eps: first Thompsen parameter
           :param azimuth: azimuth (rotation around verticle axis)
           :param gamma: third Thompsen parameter
           :param rho: density
           :param dt: time step size. If not present a suitable time step size is calculated.
           :param p0: initial solution (Q(t=0), P(t=0)). If not present zero is used.
           :param v0: initial solution change rate. If not present zero is used.
           :param absorption_zone: thickness of absorption zone
           :param absorption_cut: boundary value of absorption decay factor
           :param lumping: if True mass matrix lumping is being used. This is accelerates the computing but introduces some diffusion.
           """
           DIM=domain.getDim()
           f=createAbsorptionLayerFunction(v_p.getFunctionSpace().getX(), absorption_zone, absorption_cut)

           self.v2_p=v_p**2
           self.v2_t=self.v2_p*sqrt(1+2*delta)
           self.v2_n=self.v2_p*(1+2*eps)

           if p0 == None:
              p0=Data(0.,(2,),Solution(domain))
           else:
              p0=interpolate(p0, Solution(domain ))

           if v0 == None:
              v0=Data(0.,(2,),Solution(domain))
           else:
              v0=interpolate(v0, Solution(domain ))

           if dt == None:
                  dt=min(min(inf(domain.getSize()/sqrt(self.v2_p)), inf(domain.getSize()/sqrt(self.v2_t)), inf(domain.getSize()/sqrt(self.v2_n))) , wavelet.getTimeScale())*0.2

           super(SonicHTIWave, self).__init__( dt, u0=p0, v0=v0, t0=0.)

           self.__wavelet=wavelet

           self.__mypde=LinearPDESystem(domain)
           if lumping: self.__mypde.getSolverOptions().setSolverMethod(SolverOptions.HRZ_LUMPING)
           self.__mypde.setSymmetryOn()
           self.__mypde.setValue(D=kronecker(2), X=self.__mypde.createCoefficient('X'))
           self.__source_tag=source_tag


           self.__r=Vector(0, DiracDeltaFunctions(self.__mypde.getDomain()))
           self.__r.setTaggedValue(self.__source_tag, source_vector)

        def  _getAcceleration(self, t, u):
            """
            returns the acceleraton for time `t` and solution `u` at time `t`
            """
            dQ = grad(u[0])[0]
            dP = grad(u[1])[1:]
            sigma=self.__mypde.getCoefficient('X')

            sigma[0,0] = self.v2_n*dQ
            sigma[0,1:] = self.v2_t*dP
            sigma[1,0] = self.v2_t*dQ
            sigma[1,1:] = self.v2_p*dP

            self.__mypde.setValue(X=-sigma, y_dirac= self.__r * self.__wavelet.getValue(t))
            return self.__mypde.getSolution()            
Exemple #8
0
class TTIWave(WaveBase):
        """
        Solving the 2D TTI wave equation with

        `sigma_xx= c11*e_xx + c13*e_zz + c15*e_xz`
        `sigma_zz= c13*e_xx + c33*e_zz + c35*e_xz`
        `sigma_xz= c15*e_xx + c35*e_zz + c55*e_xz`

        the coefficients `c11`, `c13`, etc are calculated from the tompsen parameters `eps`, `delta` and the tilt `theta`

        :note: currently only the 2D case is supported.
        """

        def __init__(self, domain, v_p, v_s,   wavelet, source_tag,
                source_vector = [0.,1.], eps=0., delta=0., theta=0., rho=1.,
                dt=None, u0=None, v0=None, absorption_zone=300*U.m,
                absorption_cut=1e-2, lumping=True):
           """
           initialize the TTI wave solver

           :param domain: domain of the problem
           :type domain: `Domain`
           :param v_p: vertical p-velocity field
           :type v_p: `Scalar`
           :param v_s: vertical s-velocity field
           :type v_s: `Scalar`
           :param wavelet: wavelet to describe the time evolution of source term
           :type wavelet: `Wavelet`
           :param source_tag: tag of the source location
           :type source_tag: 'str' or 'int'
           :param source_vector: source orientation vector
           :param eps: first Thompsen parameter
           :param delta: second Thompsen parameter
           :param theta: tilting (in Rad)
           :param rho: density
           :param dt: time step size. If not present a suitable time step size is calculated.
           :param u0: initial solution. If not present zero is used.
           :param v0: initial solution change rate. If not present zero is used.
           :param absorption_zone: thickness of absorption zone
           :param absorption_cut: boundary value of absorption decay factor
           :param lumping: if True mass matrix lumping is being used. This is accelerates the computing but introduces some diffusion.
           """
           DIM=domain.getDim()
           if not DIM == 2:
                raise ValueError("Only 2D is supported.")
           f=createAbsorptionLayerFunction(Function(domain).getX(), absorption_zone, absorption_cut)

           v_p=v_p*f
           v_s=v_s*f

           if u0 == None:
              u0=Vector(0.,Solution(domain))
           else:
              u0=interpolate(p0, Solution(domain ))

           if v0 == None:
              v0=Vector(0.,Solution(domain))
           else:
              v0=interpolate(v0, Solution(domain ))

           if dt == None:
                  dt=min((1./5.)*min(inf(domain.getSize()/v_p), inf(domain.getSize()/v_s)), wavelet.getTimeScale())

           super(TTIWave, self).__init__( dt, u0=u0, v0=v0, t0=0.)

           self.__wavelet=wavelet

           self.__mypde=LinearPDESystem(domain)
           if lumping: self.__mypde.getSolverOptions().setSolverMethod(SolverOptions.HRZ_LUMPING)
           self.__mypde.setSymmetryOn()
           self.__mypde.setValue(D=rho*kronecker(DIM), X=self.__mypde.createCoefficient('X'))
           self.__source_tag=source_tag

           self.__r=Vector(0, DiracDeltaFunctions(self.__mypde.getDomain()))
           self.__r.setTaggedValue(self.__source_tag, source_vector)

           c0_33=v_p**2 * rho
           c0_66=v_s**2 * rho
           c0_11=(1+2*eps) * c0_33
           c0_13=sqrt(2*c0_33*(c0_33-c0_66) * delta + (c0_33-c0_66)**2)-c0_66

           self.c11= c0_11*cos(theta)**4 - 2*c0_13*cos(theta)**4 + 2*c0_13*cos(theta)**2 + c0_33*sin(theta)**4 - 4*c0_66*cos(theta)**4 + 4*c0_66*cos(theta)**2
           self.c13= -c0_11*cos(theta)**4 + c0_11*cos(theta)**2 + c0_13*sin(theta)**4 + c0_13*cos(theta)**4 - c0_33*cos(theta)**4 + c0_33*cos(theta)**2 + 4*c0_66*cos(theta)**4 - 4*c0_66*cos(theta)**2
           self.c16= (-2*c0_11*cos(theta)**2 - 4*c0_13*sin(theta)**2 + 2*c0_13 + 2*c0_33*sin(theta)**2 - 8*c0_66*sin(theta)**2 + 4*c0_66)*sin(theta)*cos(theta)/2
           self.c33= c0_11*sin(theta)**4 - 2*c0_13*cos(theta)**4 + 2*c0_13*cos(theta)**2 + c0_33*cos(theta)**4 - 4*c0_66*cos(theta)**4 + 4*c0_66*cos(theta)**2
           self.c36= (2*c0_11*cos(theta)**2 - 2*c0_11 + 4*c0_13*sin(theta)**2 - 2*c0_13 + 2*c0_33*cos(theta)**2 + 8*c0_66*sin(theta)**2 - 4*c0_66)*sin(theta)*cos(theta)/2
           self.c66= -c0_11*cos(theta)**4 + c0_11*cos(theta)**2 + 2*c0_13*cos(theta)**4 - 2*c0_13*cos(theta)**2 - c0_33*cos(theta)**4 + c0_33*cos(theta)**2 + c0_66*sin(theta)**4 + 3*c0_66*cos(theta)**4 - 2*c0_66*cos(theta)**2

        def  _getAcceleration(self, t, u):
             """
             returns the acceleraton for time `t` and solution `u` at time `t`
             """
             du = grad(u)
             sigma=self.__mypde.getCoefficient('X')

             e_xx=du[0,0]
             e_zz=du[1,1]
             e_xz=du[0,1]+du[1,0]


             sigma[0,0]= self.c11 * e_xx + self.c13 * e_zz + self.c16 * e_xz
             sigma[1,1]= self.c13 * e_xx + self.c33 * e_zz + self.c36 * e_xz
             sigma_xz  = self.c16 * e_xx + self.c36 * e_zz + self.c66 * e_xz

             sigma[0,1]=sigma_xz
             sigma[1,0]=sigma_xz

             self.__mypde.setValue(X=-sigma, y_dirac= self.__r * self.__wavelet.getValue(t))
             return self.__mypde.getSolution()
Exemple #9
0
class HTIWave(WaveBase):
    """
    Solving the HTI wave equation (along the x_0 axis)

    :note: In case of a two dimensional domain a horizontal domain is considered, i.e. the depth component is dropped.
    """

    def __init__(self, domain, v_p, v_s,   wavelet, source_tag,
            source_vector = [1.,0.,0.], eps=0., gamma=0., delta=0., rho=1.,
            dt=None, u0=None, v0=None, absorption_zone=None,
            absorption_cut=1e-2, lumping=True, disable_fast_assemblers=False):
       """
       initialize the VTI wave solver

       :param domain: domain of the problem
       :type domain: `Domain`
       :param v_p: vertical p-velocity field
       :type v_p: `Scalar`
       :param v_s: vertical s-velocity field
       :type v_s: `Scalar`
       :param wavelet: wavelet to describe the time evolution of source term
       :type wavelet: `Wavelet`
       :param source_tag: tag of the source location
       :type source_tag: 'str' or 'int'
       :param source_vector: source orientation vector
       :param eps: first Thompsen parameter
       :param delta: second Thompsen parameter
       :param gamma: third Thompsen parameter
       :param rho: density
       :param dt: time step size. If not present a suitable time step size is calculated.
       :param u0: initial solution. If not present zero is used.
       :param v0: initial solution change rate. If not present zero is used.
       :param absorption_zone: thickness of absorption zone
       :param absorption_cut: boundary value of absorption decay factor
       :param lumping: if True mass matrix lumping is being used. This is accelerates the computing but introduces some diffusion.
       :param disable_fast_assemblers: if True, forces use of slower and more general PDE assemblers
       """
       DIM=domain.getDim()
       self.fastAssembler = hasattr(domain, "createAssembler") and not disable_fast_assemblers
       f=createAbsorptionLayerFunction(v_p.getFunctionSpace().getX(), absorption_zone, absorption_cut)

       v_p=v_p*f
       v_s=v_s*f

       if u0 == None:
          u0=Vector(0.,Solution(domain))
       else:
          u0=interpolate(p0, Solution(domain ))

       if v0 == None:
          v0=Vector(0.,Solution(domain))
       else:
          v0=interpolate(v0, Solution(domain ))

       if dt == None:
            dt=min((1./5.)*min(inf(domain.getSize()/v_p), inf(domain.getSize()/v_s)), wavelet.getTimeScale())

       super(HTIWave, self).__init__( dt, u0=u0, v0=v0, t0=0.)

       self.__wavelet=wavelet

       self.c33 = v_p**2 * rho
       self.c44 = v_s**2 * rho
       self.c11 = (1+2*eps) * self.c33
       self.c66 = (1+2*gamma) * self.c44
       self.c13 = sqrt(2*self.c33*(self.c33-self.c44) * delta + (self.c33-self.c44)**2)-self.c44
       self.c23 = self.c33-2*self.c66

       if self.fastAssembler:
            C = [("c11", self.c11),
                ("c23", self.c23), ("c13", self.c13), ("c33", self.c33),
                ("c44", self.c44), ("c66", self.c66)]
            if "speckley" in domain.getDescription().lower():
                C = [(n, interpolate(d, ReducedFunction(domain))) for n,d in C]
            self.__mypde=WavePDE(domain, C)
       else:
            self.__mypde=LinearPDESystem(domain)
            self.__mypde.setValue(X=self.__mypde.createCoefficient('X'))

       if lumping:
            self.__mypde.getSolverOptions().setSolverMethod(SolverOptions.HRZ_LUMPING)
       self.__mypde.setSymmetryOn()
       self.__mypde.setValue(D=rho*kronecker(DIM))
       self.__source_tag=source_tag

       if DIM == 2:
          source_vector= [source_vector[0],source_vector[2]]

       self.__r=Vector(0, DiracDeltaFunctions(self.__mypde.getDomain()))
       self.__r.setTaggedValue(self.__source_tag, source_vector)


    def setQ(self,q):
        """
        sets the PDE q value

        :param q: the value to set
        """
        self.__mypde.setValue(q=q)

    def  _getAcceleration(self, t, u):
         """
         returns the acceleraton for time `t` and solution `u` at time `t`
         """
         du = grad(u)
         if self.fastAssembler:
            self.__mypde.setValue(du=du, y_dirac= self.__r * self.__wavelet.getValue(t))
         else:
             sigma=self.__mypde.getCoefficient('X')

             if self.__mypde.getDim() == 3:
                e11=du[0,0]
                e22=du[1,1]
                e33=du[2,2]

                sigma[0,0]=self.c11*e11+self.c13*(e22+e33)
                sigma[1,1]=self.c13*e11+self.c33*e22+self.c23*e33
                sigma[2,2]=self.c13*e11+self.c23*e22+self.c33*e33

                s=self.c44*(du[2,1]+du[1,2])
                sigma[1,2]=s
                sigma[2,1]=s

                s=self.c66*(du[2,0]+du[0,2])
                sigma[0,2]=s
                sigma[2,0]=s

                s=self.c66*(du[0,1]+du[1,0])
                sigma[0,1]=s
                sigma[1,0]=s

             else:
                e11=du[0,0]
                e22=du[1,1]
                sigma[0,0]=self.c11*e11+self.c13*e22
                sigma[1,1]=self.c13*e11+self.c33*e22

                s=self.c66*(du[1,0]+du[0,1])
                sigma[0,1]=s
                sigma[1,0]=s
             self.__mypde.setValue(X=-sigma, y_dirac= self.__r * self.__wavelet.getValue(t))

         return self.__mypde.getSolution()
Exemple #10
0
            raise ValueError("mu_eff<0")

        sigma = 2 * mu_eff * eps_e + lame_eff * trace(eps_e) * k3

        if (UPDATE_OPERATOR):
            pde.setValue(A=mu_eff *
                         (swap_axes(k3Xk3, 0, 3) + swap_axes(k3Xk3, 1, 3)) +
                         lame_eff * k3Xk3)
        else:
            pde.setValue(A=mu *
                         (swap_axes(k3Xk3, 0, 3) + swap_axes(k3Xk3, 1, 3)) +
                         lame * k3Xk3)

        pde.setValue(X=-sigma, y=SIGMA_N * dom.getNormal(), r=dt * v0 - du)

        ddu = pde.getSolution()
        deps += symmetric(grad(ddu))
        du += ddu
        norm_ddu = Lsup(ddu)
        norm_du = Lsup(du)
        print("\t displacement change update = %e of %e" % (norm_ddu, norm_du))
        iter += 1
    print("deps =", inf(deps), sup(deps))
    u += du
    n += 1
    t += dt
    #=========== this is a test for triaxial test ===========================
    print("\tYYY t = ", t)
    a = (SIGMA_N - lame_eff * VMAX * t) / (lame_eff + mu_eff) / 2
    #=========== this is a test for triaxial test ===========================
    print("\tYYY a = ", meanValue(a))