def pde_work(self, **args):
     x = self.domain.getX()
     gammaD = whereZero(x[0]) + whereZero(x[1])
     mypde = Poisson(domain=self.domain)
     mypde.setValue(f=1 + self.swid, q=gammaD)
     u = mypde.getSolution()
     return True
 def pde_work(self, **args):
     x = self.domain.getX()
     gammaD = whereZero(x[0]) + whereZero(x[1])
     mypde = Poisson(domain=self.domain)
     mypde.setValue(f=1 + self.swid, q=gammaD)
     u = mypde.getSolution()
     return True
def task(self, **kwargs):
    v = kwargs['v']
    dom = self.domain
    pde = Poisson(dom)
    x = dom.getX()
    gammaD = whereZero(x[0]) + whereZero(x[1])
    pde.setValue(f=v, q=gammaD)
    soln = pde.getSolution()
    soln.dump('soln%d.ncdf' % v)
Exemple #4
0
def task(self, **kwargs):
    v=kwargs['v']
    dom=self.domain
    pde=Poisson(dom)
    x=dom.getX()
    gammaD=whereZero(x[0])+whereZero(x[1])
    pde.setValue(f=v, q=gammaD)
    soln=pde.getSolution()
    soln.dump('soln%d.ncdf'%v)
 def work(self):
     x = self.domain.getX()
     gammaD = whereZero(x[0]) + whereZero(x[1])
     # define PDE and get its solution u
     mypde = Poisson(domain=self.domain)
     mypde.setValue(f=self.jobid, q=gammaD)
     u = Lsup(mypde.getSolution())  # we won't actually export the value to make
     self.exportValue("answer", self.jobid)  # testing easier
     return True
 def work(self):
     x = self.domain.getX()
     gammaD = whereZero(x[0]) + whereZero(x[1])
     # define PDE and get its solution u
     mypde = Poisson(domain=self.domain)
     mypde.setValue(f=self.jobid, q=gammaD)
     u = Lsup(mypde.getSolution()
              )  # we won't actually export the value to make
     self.exportValue("answer", self.jobid)  # testing easier
     return True
def Solve2(mydomain, height):
    print("Partially constraint solution")
    l = [1., 1., 1.]
    l[mydomain.getDim() - 1] = height
    print(l)
    cf = ContinuousFunction(mydomain)
    x = cf.getX()
    #construct exact solution:
    u_ex = Scalar(1., cf)
    for i in range(mydomain.getDim()):
        u_ex *= x[i] * (2 * l[i] - x[i])
    #construct mask:
    msk = Scalar(0., cf)
    for i in range(mydomain.getDim()):
        msk += whereZero(x[i])
    #construct right hand side
    f = Scalar(0, cf)
    for i in range(mydomain.getDim()):
        f_p = Scalar(1, cf)
        for j in range(mydomain.getDim()):
            if i == j:
                f_p *= 2.
            else:
                f_p *= x[j] * (2 * l[j] - x[j])
        f += f_p
    mypde = Poisson(mydomain)
    mypde.setTolerance(1.e-10)
    mypde.setValue(f=f, q=msk)
    u = mypde.getSolution()
    error = Lsup(u - u_ex) / Lsup(u_ex)
    print("error = ", error)
    return error
def Solve2(mydomain,height):
    print("Partially constraint solution")
    l=[1.,1.,1.]
    l[mydomain.getDim()-1]=height
    print(l)
    cf=ContinuousFunction(mydomain)
    x=cf.getX()
    #construct exact solution:
    u_ex=Scalar(1.,cf)
    for i in range(mydomain.getDim()):
      u_ex*=x[i]*(2*l[i]-x[i])
    #construct mask:
    msk=Scalar(0.,cf)
    for i in range(mydomain.getDim()):
      msk+=whereZero(x[i])
    #construct right hand side 
    f=Scalar(0,cf)
    for i in range(mydomain.getDim()):
       f_p=Scalar(1,cf)
       for j in range(mydomain.getDim()):
          if i==j:
             f_p*=2.
          else:
             f_p*=x[j]*(2*l[j]-x[j])
       f+=f_p
    mypde=Poisson(mydomain)
    mypde.setTolerance(1.e-10)
    mypde.setValue(f=f,q=msk)
    u=mypde.getSolution()
    error=Lsup(u-u_ex)/Lsup(u_ex)
    print("error = ",error)
    return error
Exemple #9
0
        from esys.ripley import Brick
        HAVE_RIPLEY = True
    except ImportError:
        HAVE_RIPLEY = False
        print("Ripley module not available")

    if HAVE_RIPLEY:
        from esys.escript import *
        from esys.escript.linearPDEs import Poisson
        from esys.weipa import saveSilo, saveVoxet

        import tempfile

        dom = Brick(l0=1., l1=1., n0=9, n1=9, n2=9)
        x = dom.getX()
        gammaD = whereZero(x[0]) + whereZero(x[1])
        pde = Poisson(dom)
        q = gammaD
        pde.setValue(f=1, q=q)
        u = pde.getSolution()
        u = interpolate(u + dom.getX()[2], ReducedFunction(dom))
        print(u)
        handle, filename = tempfile.mkstemp(suffix='.vo', prefix='poisson')
        saveVoxet(filename, u=u)
        print("-------")
        dom = Brick(l0=1., l1=1., l2=4., n0=18, n1=18, n2=36)
        v = readVoxet(dom, filename, 'u', fillValue=0.5)
        print(v)
        os.remove(filename)
        #saveSilo('/tmp/poisson', v=v)
Exemple #10
0
# Very basic sanity checks following a build
# It is important that this script does not create any files unless
# it is _certain_ they are removed when finished or failed.
# We do not want the source directory polluted by actions here


from esys.escript import *
from esys.escript.linearPDEs import Poisson
import esys.ripley as ripley
import esys.finley as finley
import esys.speckley as speckley
from esys.weipa import saveVTK

mydomain = finley.Rectangle(l0=1.,l1=1.,n0=40, n1=20)
# define characteristic function of Gamma^D
x = mydomain.getX()
gammaD = whereZero(x[0])+whereZero(x[1])
# define PDE and get its solution u
mypde = Poisson(domain=mydomain)
mypde.setValue(f=1,q=gammaD)
u = mypde.getSolution()
# write u to an external file  
#saveVTK("u.vtu",sol=u)



Exemple #11
0
# Very basic sanity checks following a build
# It is important that this script does not create any files unless
# it is _certain_ they are removed when finished or failed.
# We do not want the source directory polluted by actions here

from esys.escript import *
from esys.escript.linearPDEs import Poisson
import esys.ripley as ripley
import esys.finley as finley
import esys.speckley as speckley
from esys.weipa import saveVTK

mydomain = finley.Rectangle(l0=1., l1=1., n0=40, n1=20)
# define characteristic function of Gamma^D
x = mydomain.getX()
gammaD = whereZero(x[0]) + whereZero(x[1])
# define PDE and get its solution u
mypde = Poisson(domain=mydomain)
mypde.setValue(f=1, q=gammaD)
u = mypde.getSolution()
# write u to an external file
#saveVTK("u.vtu",sol=u)
Exemple #12
0
if __name__ == "__main__":
    try:
        from esys.ripley import Brick
        HAVE_RIPLEY = True
    except ImportError:
        HAVE_RIPLEY = False
        print("Ripley module not available")

    if HAVE_RIPLEY:
        from esys.escript import *
        from esys.escript.linearPDEs import Poisson
        from esys.weipa import saveSilo, saveVoxet

        dom = Brick(l0=1.,l1=1.,n0=9, n1=9, n2=9)
        x = dom.getX()
        gammaD = whereZero(x[0])+whereZero(x[1])
        pde = Poisson(dom)
        q = gammaD
        pde.setValue(f=1, q=q)
        u = pde.getSolution()
        u=interpolate(u+dom.getX()[2], ReducedFunction(dom))
        print(u)
        saveVoxet('/tmp/poisson.vo', u=u)
        print("-------")
        dom = Brick(l0=1.,l1=1.,l2=4.,n0=18, n1=18, n2=36)
        v=readVoxet(dom, '/tmp/poisson.vo', 'u', fillValue=0.5)
        print(v)
        #saveSilo('/tmp/poisson', v=v)