def add_branch_text(tree, tree_style, node_dict): root_node = tree & 'root' for node in tree.traverse(): if node is root_node: continue T1 = TextFace(node.name, ftype="Monaco", fsize=10) T1.hz_align = 0 node.add_face(T1, 0, 'branch-top') T2 = TextFace('%s%%' % float_trans(node_dict[node.name].profile * 100), ftype="Monaco", fsize=10) T2.hz_align = 0 node.add_face(T2, 0, 'branch-bottom') # print node_dict[node.name].size node.dist = node_dict[node.name].branch_length tree_style.scale = 1
def my_layout(node): circle_color = 'lightgray' if colormap is None or node.name not in colormap else colormap[ node.name] text_color = 'black' if isinstance(circle_color, str): C = CircleFace(radius=max(3, 10 * scipy.sqrt(node.frequency)), color=circle_color, label={ 'text': str(node.frequency), 'color': text_color } if node.frequency > 0 else None) C.rotation = -90 C.hz_align = 1 faces.add_face_to_node(C, node, 0) else: P = PieChartFace( [100 * x / node.frequency for x in circle_color.values()], 2 * 10 * scipy.sqrt(node.frequency), 2 * 10 * scipy.sqrt(node.frequency), colors=[(color if color != 'None' else 'lightgray') for color in list(circle_color.keys())], line_color=None) T = TextFace(' '.join( [str(x) for x in list(circle_color.values())]), tight_text=True) T.hz_align = 1 T.rotation = -90 faces.add_face_to_node(P, node, 0, position='branch-right') faces.add_face_to_node(T, node, 1, position='branch-right') if idlabel: T = TextFace(node.name, tight_text=True, fsize=6) T.rotation = -90 T.hz_align = 1 faces.add_face_to_node( T, node, 1 if isinstance(circle_color, str) else 2, position='branch-right')
def _add_header(self, header_name, column_add=0): n = TextFace(f'{header_name}') n.margin_top = 1 n.margin_right = 1 n.margin_left = 20 n.margin_bottom = 1 n.hz_align = 2 n.vt_align = 2 n.rotation = 270 n.inner_background.color = "white" n.opacity = 1. # add header self.tss.aligned_header.add_face(n, self.column_count-1+column_add)
def traitTree(tree, traits, mapper, outDir, floatSwitch=0): ### Take dict of traits and [R,G,B]-returning function ### Draw a tree with the continuous trait painted on via a colormapping function def rgb2hex(r, g, b): hex = "#{:02x}{:02x}{:02x}".format(r, g, b) return hex for n in tree.traverse(): if n.is_leaf(): n.set_style(nstyle_L) # a manual way to set leaf labels #n.add_face(TextFace(str(n.name)), column=0, position="aligned") else: n.set_style(nstyle) #nd = TextFace(str(n.ND)) # label with node ID # make the face if round == 0: nd = TextFace(str(int(round( traits[n.ND])))) # label with rounded continuous trait value else: nd = CircleFace( 10, color=rgb2hex(*[int(val) for val in mapper(traits[n.ND])])) #nd = TextFace(str(round(traits[n.ND], floatSwitch))) # label with rounded continuous trait value #nd.background.color = rgb2hex(*[int(val) for val in mapper(traits[n.ND], gamma=0.8, scaleMax=255)]) # setup for wl2RGB #nd.background.color = rgb2hex(*[int(val) for val in mapper(traits[n.ND])]) # setup for grayscale nd.background.color = None #nd.margin_right = 2 #nd.margin_top = 1 #nd.margin_left = 2 #nd.margin_bottom = 1 nd.border.width = None nd.hz_align = 2 #nd.inner_border.width = 1 # outline for the circle node #ol = CircleFace(11, color = "black") #ol.hz_align = 0 #n.add_face(ol, column=0, position="float-behind") #float-behind n.add_face(nd, column=0, position="float") #float # this is necessary for some reason to keep the tree from collapsing n.add_face(TextFace(" "), column=0, position="branch-bottom") outFile = outDir + "/cont_trait.pdf" tree.render(outFile, tree_style=tree_style) print >> sys.stderr, outFile
def get_tree_style(): ts = TreeStyle() # ts.mode = 'c' ts.margin_top = 10 ts.margin_bottom = 10 ts.margin_left = 10 ts.margin_right = 10 ts.show_leaf_name = False ts.show_branch_length = False ts.show_branch_support = False ts.show_scale = False title = TextFace(" Tax Assignment Tree", fsize=10) title.hz_align = 2 title.vt_align = 2 ts.title.add_face(TextFace(" "), column=0) ts.title.add_face(TextFace(" "), column=0) ts.title.add_face(title, column=0) return ts
def add_heatmap(self, taxon2value, header_name, continuous_scale=False, show_text=False): from metagenlab_libs.colors import get_continuous_scale self._add_header(header_name) if continuous_scale: color_scale = get_continuous_scale(taxon2value.values()) for i, lf in enumerate(self.tree.iter_leaves()): if not lf.name in taxon2value: n = TextFace('') else: value = taxon2value[lf.name] if show_text: n = TextFace('%s' % value) else: n = TextFace(' ') n.margin_top = 2 n.margin_right = 3 n.margin_left = 3 n.margin_bottom = 2 n.hz_align = 1 n.vt_align = 1 n.border.width = 3 n.border.color = "#ffffff" if continuous_scale: n.background.color = rgb2hex(color_scale[0].to_rgba(float(value))) n.opacity = 1. i+=1 if self.rotate: n.rotation = 270 lf.add_face(n, self.column_count, position="aligned") self.column_count += 1
def my_layout(node): circle_color = 'lightgray' if colormap is None or node.name not in colormap else colormap[ node.name] text_color = 'black' if isinstance(circle_color, str): if isolabel and hasattr(node, 'isotype'): nl = ''.join( sorted(set([ISO_SHORT[iss] for iss in node.isotype]), key=lambda x: ISO_TYPE_charORDER[x])) else: nl = str(node.frequency) C = CircleFace(radius=max(3, 10 * scipy.sqrt(node.frequency)), color=circle_color, label={ 'text': nl, 'color': text_color } if node.frequency > 0 else None) C.rotation = -90 C.hz_align = 1 faces.add_face_to_node(C, node, 0) else: P = PieChartFace( [100 * x / node.frequency for x in circle_color.values()], 2 * 10 * scipy.sqrt(node.frequency), 2 * 10 * scipy.sqrt(node.frequency), colors=[(color if color != 'None' else 'lightgray') for color in list(circle_color.keys())], line_color=None) T = TextFace(' '.join( [str(x) for x in list(circle_color.values())]), tight_text=True) T.hz_align = 1 T.rotation = -90 faces.add_face_to_node(P, node, 0, position='branch-right') faces.add_face_to_node(T, node, 1, position='branch-right') if idlabel: T = TextFace(node.name, tight_text=True, fsize=6) T.rotation = -90 T.hz_align = 1 faces.add_face_to_node( T, node, 1 if isinstance(circle_color, str) else 2, position='branch-right') elif isolabel and hasattr(node, 'isotype') and False: iso_name = ''.join( sorted(set([ISO_SHORT[iss] for iss in node.isotype]), key=lambda x: ISO_TYPE_charORDER[x])) #T = TextFace(iso_name, tight_text=True, fsize=6) #T.rotation = -90 #T.hz_align = 1 #faces.add_face_to_node(T, node, 1 if isinstance(circle_color, str) else 2, position='branch-right') C = CircleFace(radius=max(3, 10 * scipy.sqrt(node.frequency)), color=circle_color, label={ 'text': iso_name, 'color': text_color } if node.frequency > 0 else None) C.rotation = -90 C.hz_align = 1 faces.add_face_to_node(C, node, 0)
def heatmap_view(tree, orthologous_groups, save_dir): """Generates a heatmap of regulation states in all species.""" light_tree = copy.deepcopy(tree) # Tree copy for the light heatmap # Heat map settings rect_face_fgcolor = 'black' locus_tag_len = max( len(gene.locus_tag) + 5 for ortho_grp in orthologous_groups for gene in ortho_grp.genes) rect_face_width = locus_tag_len * 8 light_rect_face_width = 20 rect_face_height = 20 rotation = 90 # Sort orthologous groups by the number of regulated genes in each group orthologous_groups = filter_and_sort_orthologous_grps(orthologous_groups) # For each species and its gene in each orthologous group, draw a rectangle for node, light_node in zip(tree.get_leaves(), light_tree.get_leaves()): for i, orthologous_grp in enumerate(orthologous_groups, start=1): #get all orthologs in group matching_genes = [g for g in orthologous_grp.genes \ if g.genome.strain_name == node.name] #if there is ortholog if len(matching_genes) > 0: # Get the first ortholog from the genome in the group #this is the one with higher probability of regulation. #so this probability will be displayed for the group gene = matching_genes[0] p_regulation = gene.operon.regulation_probability p_notregulation = 1.0 - p_regulation p_absence = 0 # No ortholog from this genome else: gene = None p_regulation = 0 p_notregulation = 0 p_absence = 1 # Color of the rectangle is based on probabilities rect_face_bgcolor = rgb2hex(p_notregulation, p_regulation, p_absence) rect_face_text = ('%s [%d]' % (gene.locus_tag, gene.operon.operon_id) if gene else '') rect_face_label = { 'text': rect_face_text, 'font': 'Courier', 'fontsize': 8, 'color': 'black' } # Create the rectangle rect_face = RectFace(rect_face_width, rect_face_height, rect_face_fgcolor, rect_face_bgcolor, label=rect_face_label) light_rect_face = RectFace(light_rect_face_width, rect_face_height, rect_face_fgcolor, rect_face_bgcolor, label='') rect_face.rotation = -rotation light_rect_face.rotation = -rotation # Add the rectangle to the corresponding column node.add_face(rect_face, column=i, position='aligned') light_node.add_face(light_rect_face, column=i, position='aligned') ts = TreeStyle() # Add orthologous group descriptions descriptions = ['-'.join([grp.description, \ str([item['ID'] for item in grp.COGs]) if len(grp.COGs)>0 else '', \ str([item['ID'] for item in grp.NOGs]) if len(grp.NOGs)>0 else '', \ str([item['ID'] for item in grp.PFAMs])] if len(grp.PFAMs)>0 else '')\ for grp in orthologous_groups] max_description_len = max(map(len, descriptions)) descriptions = [ '[%d]' % i + description + ' ' * (max_description_len - len(description)) for i, description in enumerate(descriptions, start=1) ] for i, description in enumerate(descriptions, start=1): text_face = TextFace(description, ftype='Courier') text_face.hz_align = 1 text_face.vt_align = 1 text_face.rotation = -rotation ts.aligned_header.add_face(text_face, column=i) # Rotate the generated heatmap. ts.margin_left = 10 ts.margin_top = 20 ts.rotation = rotation ts.show_scale = False # For some reason, it can't render to PDF in color tree.render(os.path.join(save_dir, 'heatmap.svg'), tree_style=ts) light_tree.render(os.path.join(save_dir, 'heatmap_light.svg'), tree_style=ts)
def generateFigure(PF, sample, rank, input_file, output_base_name, file_type, plot_l1, scaling, output_dpi): # Make the ETE3 tree try: tree = ncbi.get_topology(PF.get_all_tax_ids(sample), rank_limit=rank) except: logging.getLogger('Tampa').critical("Input format not compatible.") exit(1) ts = TreeStyle() ts.layout_fn = PF.layout ts.mode = "c" ts.show_leaf_name = False ts.show_branch_length = False ts.show_branch_support = False ts.min_leaf_separation = 10 ts.arc_span = 360 #ts.legend.add_face(CircleFace(100, "#1b9e77", label="Predicted"), column=0) #ts.legend.add_face(CircleFace(100, '#d95f02', label="True"), column=1) # add white space to move the legend closer ts.legend.add_face(CircleFace(65, "#FFFFFF"), column=2) ts.legend.add_face(CircleFace(65, "#FFFFFF"), column=1) ts.legend.add_face(CircleFace(65, "#FFFFFF"), column=0) ts.legend.add_face(CircleFace(65, "#FFFFFF"), column=2) ts.legend.add_face(CircleFace(65, "#FFFFFF"), column=1) ts.legend.add_face(CircleFace(65, "#FFFFFF"), column=0) # add the legend legend_fs = 50 C1 = CircleFace(100, "#1b9e77") C1.hz_align = True ts.legend.add_face(C1, column=0) T1 = TextFace("Predicted", fsize=legend_fs) T1.hz_align = True ts.legend.add_face(T1, column=0) if len(PF.ground_truth_dict) > 0: C2 = CircleFace(100, "#d95f02") C2.hz_align = True ts.legend.add_face(C2, column=1) T2 = TextFace("True", fsize=legend_fs) T2.hz_align = True ts.legend.add_face(T2, column=1) T3 = TextFace(f"Tool: {os.path.basename(input_file).split('.')[0]}", fsize=legend_fs) T3.hz_align = True ts.legend.add_face(T3, column=0) ts.allow_face_overlap = False # this lets me mess a bit with font size and face size without the interaction of the two ts.min_leaf_separation = 10 tree_output_file = f"{output_base_name}_tree_{rank}_{sample}.{file_type}" tree.render(tree_output_file, h=5.2, w=5, tree_style=ts, units="in", dpi=output_dpi) if plot_l1: # if you asked for L1 too, then plot that true_abundance_at_rank = [] predicted_abundance_at_rank = [] for node in tree.get_leaves(): if node.rank == rank: tax_id = str(node.taxid) if tax_id in PF.ground_truth_tax_id_to_percentage: true_abundance_at_rank.append(PF.ground_truth_tax_id_to_percentage[str(node.taxid)] / 100.) else: true_abundance_at_rank.append(0) if tax_id in PF.profile_tax_id_to_percentage: predicted_abundance_at_rank.append(PF.profile_tax_id_to_percentage[str(node.taxid)] / 100.) else: predicted_abundance_at_rank.append(0) data = np.zeros((len(true_abundance_at_rank), 2)) data[:, 0] = np.array(true_abundance_at_rank) data[:, 1] = np.array(predicted_abundance_at_rank) df = pd.DataFrame(data, columns=['True', 'Predicted']) # g = seaborn.FacetGrid(df, height=6) ax = seaborn.scatterplot(x='True', y='Predicted', data=df, color='b', s=55) eps = 1 ax.set_aspect('equal') max_val = np.max(data) + eps ax.set_xlim(-.5, max_val) ax.set_ylim(-.5, max_val) ax.set_xbound(-.5, max_val) ax.set_ybound(-.5, max_val) #plt.figure(figsize=(6,6)) plt.plot(np.linspace(0, max_val, 100), np.linspace(0, max_val, 100), color='k') for (x, y) in zip(true_abundance_at_rank, predicted_abundance_at_rank): if x > y: ax.vlines(x, y, x, colors='r') if y > x: ax.vlines(x, x, y, colors='r') plt.title(f"Tool: {os.path.basename(input_file).split('.')[0]}") plt.tight_layout() l1_out_file = f"{output_base_name}_L1_{rank}.{file_type}" plt.savefig(l1_out_file, dpi=output_dpi)
def plot_phylum_counts(NOG_id, rank='phylum', colapse_low_species_counts=4, remove_unlassified=True): ''' 1. get phylum tree 2. foreach species => get phylum 3. build phylum2count dictionnary 3. plot barchart # merge eukaryotes into 5 main clades # merge virus as a single clade ATTENTION: no-rank groups and no-rank species... ''' import MySQLdb import os from chlamdb.biosqldb import manipulate_biosqldb from ete3 import NCBITaxa, Tree, TextFace, TreeStyle, StackedBarFace ncbi = NCBITaxa() sqlpsw = os.environ['SQLPSW'] conn = MySQLdb.connect( host="localhost", # your host, usually localhost user="******", # your username passwd=sqlpsw, # your password db="eggnog") # name of the data base cursor = conn.cursor() sql = 'select * from eggnog.leaf2n_genomes_%s' % rank cursor.execute(sql, ) leaf_taxon2n_species = manipulate_biosqldb.to_dict(cursor.fetchall()) leaf_taxon2n_species_with_domain = get_NOG_taxonomy(NOG_id, rank) sql = 'select phylogeny from eggnog.phylogeny where rank="%s"' % (rank) cursor.execute(sql, ) tree = Tree(cursor.fetchall()[0][0], format=1) sql = 'select * from eggnog.taxid2label_%s' % rank cursor.execute(sql, ) taxon_id2scientific_name_and_rank = manipulate_biosqldb.to_dict( cursor.fetchall()) taxon_id2scientific_name_and_rank = { str(k): v for k, v in taxon_id2scientific_name_and_rank.items() } tss = TreeStyle() tss.draw_guiding_lines = True tss.guiding_lines_color = "blue" keep = [] for lf in tree.iter_leaves(): # n genomes if remove_unlassified: label = taxon_id2scientific_name_and_rank[str(lf.name)][0] if 'unclassified' in label: continue n_genomes = int(leaf_taxon2n_species[lf.name]) if n_genomes > colapse_low_species_counts: keep.append(lf.name) print('number of leaaves:', len(keep)) tree.prune(keep) header_list = ['Rank', 'N genomes', 'N with %s' % NOG_id, 'Percentage'] for col, header in enumerate(header_list): n = TextFace('%s' % (header)) n.margin_top = 0 n.margin_right = 1 n.margin_left = 20 n.margin_bottom = 1 n.rotation = 270 n.hz_align = 2 n.vt_align = 2 n.inner_background.color = "white" n.opacity = 1. tss.aligned_header.add_face(n, col) for lf in tree.iter_leaves(): # n genomes n_genomes = int(leaf_taxon2n_species[lf.name]) if n_genomes <= colapse_low_species_counts: continue n = TextFace(' %s ' % str(leaf_taxon2n_species[lf.name])) n.margin_top = 1 n.margin_right = 1 n.margin_left = 0 n.margin_bottom = 1 n.fsize = 7 n.inner_background.color = "white" n.opacity = 1. lf.add_face(n, 2, position="aligned") # n genomes with domain try: m = TextFace(' %s ' % str(leaf_taxon2n_species_with_domain[lf.name])) except: m = TextFace(' 0 ') m.margin_top = 1 m.margin_right = 1 m.margin_left = 0 m.margin_bottom = 1 m.fsize = 7 m.inner_background.color = "white" m.opacity = 1. lf.add_face(m, 3, position="aligned") # rank ranks = ncbi.get_rank([lf.name]) try: r = ranks[max(ranks.keys())] except: r = '-' n = TextFace(' %s ' % r, fsize=14, fgcolor='red') n.margin_top = 1 n.margin_right = 1 n.margin_left = 0 n.margin_bottom = 1 n.fsize = 7 n.inner_background.color = "white" n.opacity = 1. lf.add_face(n, 1, position="aligned") # percent with target domain try: percentage = (float(leaf_taxon2n_species_with_domain[lf.name]) / float(leaf_taxon2n_species[lf.name])) * 100 except: percentage = 0 m = TextFace(' %s ' % str(round(percentage, 2))) m.fsize = 1 m.margin_top = 1 m.margin_right = 1 m.margin_left = 0 m.margin_bottom = 1 m.fsize = 7 m.inner_background.color = "white" m.opacity = 1. lf.add_face(m, 4, position="aligned") b = StackedBarFace([percentage, 100 - percentage], width=100, height=10, colors=["#7fc97f", "white"]) b.rotation = 0 b.inner_border.color = "grey" b.inner_border.width = 0 b.margin_right = 15 b.margin_left = 0 lf.add_face(b, 5, position="aligned") n = TextFace('%s' % taxon_id2scientific_name_and_rank[str(lf.name)][0], fgcolor="black", fsize=9) # , fstyle = 'italic' lf.name = " %s (%s)" % (taxon_id2scientific_name_and_rank[str( lf.name)][0], str(lf.name)) n.margin_right = 10 lf.add_face(n, 0) tss.show_leaf_name = False for node in tree.traverse("postorder"): try: r = taxon_id2scientific_name_and_rank[str(node.name)][1] except: pass try: if r in ['phylum', 'superkingdom', 'class', 'subphylum' ] or taxon_id2scientific_name_and_rank[str( node.name)][0] in ['FCB group']: hola = TextFace( "%s" % (taxon_id2scientific_name_and_rank[str(node.name)][0])) node.add_face(hola, column=0, position="branch-top") except: pass return tree, tss
def make_cluster_tree(tree_file: str, matrix: str, out_file: str, outgroup: Optional[List[str]] = None) -> None: """Draw a tree with cluster absence/presence information from an existing tree file and absence/presence matrix, and save it as an image under the supplied file name. Arguments: tree_file: the name of the file containing the tree to annotate matrix: a comma- or tab-separated absence/presence matrix out_file: the name under which to save the resulting image outgroup: the organism(s) to use as an outgroup, if any """ # ClusterTree needs tab-separated, but that can't be exported cleanly matrix = matrix.replace(",", "\t") # tree with clustering analysis tree = ClusterTree(tree_file, text_array=matrix) # rerooting the tree if outgroup: ancestor = tree.get_common_ancestor(outgroup) tree.set_outgroup(ancestor) tree.ladderize(direction=1) # set drawing line width to 2 my_node_style = NodeStyle() my_node_style["vt_line_width"] = 2 my_node_style["hz_line_width"] = 2 my_node_style["size"] = 5 # layout function def sel_mylayout(node): node.set_style(my_node_style) if node.is_leaf(): # add names in larger font + italics species_name = AttrFace("name", fsize=12, fstyle="italic") add_face_to_node(species_name, node, column=0, position="branch-right") # add absence/presence matrix for i, value in enumerate(getattr(node, "profile", [])): if value > 0: color = "#FF0000" else: color = "#EEEEEE" my_face = CircleFace(8, color, style="circle") my_face.margin_right = 3 my_face.margin_bottom = 3 add_face_to_node(my_face, node, position="aligned", column=i) # Use my layout to visualize the tree my_tree_style = TreeStyle() # Add header for j, name in enumerate(tree.arraytable.colNames): name_face = TextFace(name, fsize=11) name_face.rotation = -90 name_face.hz_align = 1 name_face.vt_align = 1 name_face.margin_bottom = 10 my_tree_style.aligned_header.add_face(name_face, column=j) my_tree_style.scale_length = 0.1 # myTreeStyle.show_branch_support = True # don't auto-show leaf names, since we dealt with that above my_tree_style.show_leaf_name = False # set layout function for my_tree_style my_tree_style.layout_fn = sel_mylayout #tree.render(out_file, w=183, units="mm", dpi=600, tree_style=my_tree_style) tree.render(out_file, dpi=600, tree_style=my_tree_style)
def plot_tree_barplot(tree_file, taxon2mlst, header_list): ''' display one or more barplot :param tree_file: :param taxon2value_list: :param exclude_outgroup: :param bw_scale: :param barplot2percentage: list of bool to indicates if the number are percentages and the range should be set to 0-100 :return: ''' import matplotlib.cm as cm from matplotlib.colors import rgb2hex import matplotlib as mpl mlst_list = list(set(taxon2mlst.values())) mlst2color = dict(zip(mlst_list, get_spaced_colors(len(mlst_list)))) mlst2color['-'] = 'white' if isinstance(tree_file, Tree): t1 = tree_file else: t1 = Tree(tree_file) # Calculate the midpoint node R = t1.get_midpoint_outgroup() # and set it as tree outgroup t1.set_outgroup(R) tss = TreeStyle() value = 1 tss.draw_guiding_lines = True tss.guiding_lines_color = "gray" tss.show_leaf_name = False cmap = cm.YlGnBu #YlOrRd#OrRd scale_list = [] max_value_list = [] for i, lf in enumerate(t1.iter_leaves()): #if taxon2description[lf.name] == 'Pirellula staleyi DSM 6068': # lf.name = 'Pirellula staleyi DSM 6068' # continue if i == 0: # header col_add = 0 #lf.add_face(n, column, position="aligned") n = TextFace('MLST') n.margin_top = 1 n.margin_right = 2 n.margin_left = 2 n.margin_bottom = 1 n.rotation = 90 n.inner_background.color = "white" n.opacity = 1. n.hz_align = 2 n.vt_align = 2 tss.aligned_header.add_face(n, col_add + 1) try: #if lf.name in leaf2mlst or int(lf.name) in leaf2mlst: n = TextFace(' %s ' % taxon2mlst[int(lf.name)]) n.inner_background.color = 'white' m = TextFace(' ') m.inner_background.color = mlst2color[taxon2mlst[int(lf.name)]] except: n = TextFace(' na ') n.inner_background.color = "grey" m = TextFace(' ') m.inner_background.color = "white" n.opacity = 1. n.margin_top = 2 n.margin_right = 2 n.margin_left = 0 n.margin_bottom = 2 m.margin_top = 2 m.margin_right = 0 m.margin_left = 2 m.margin_bottom = 2 lf.add_face(m, 0, position="aligned") lf.add_face(n, 1, position="aligned") n = TextFace(lf.name, fgcolor="black", fsize=12, fstyle='italic') lf.add_face(n, 0) for n in t1.traverse(): nstyle = NodeStyle() if n.support < 1: nstyle["fgcolor"] = "black" nstyle["size"] = 6 n.set_style(nstyle) else: nstyle["fgcolor"] = "red" nstyle["size"] = 0 n.set_style(nstyle) return t1, tss
def plot_ete_tree(tree_file, ordered_queries, leaf_id2protein_id2identity, leaf_id2mlst, leaf_id2spa, leaf_id2meca, show_identity_values=True, leaf_id2description=False): mlst_list = list(set(leaf_id2mlst.values())) mlst2color = dict(zip(mlst_list, get_spaced_colors(len(mlst_list)))) mlst2color['-'] = 'white' t1 = Tree(tree_file) tss = TreeStyle() R = t1.get_midpoint_outgroup() t1.set_outgroup(R) t1.ladderize() head = True column_add = 4 for lf in t1.iter_leaves(): lf.branch_vertical_margin = 0 # add MLST if head: n = TextFace(' MLST ') n.margin_top = 2 n.margin_right = 2 n.margin_left = 2 n.margin_bottom = 2 n.rotation = 270 n.vt_align = 2 n.hz_align = 2 n.inner_background.color = "white" n.opacity = 1. tss.aligned_header.add_face(n, 1) if lf.name in leaf2mlst: n = TextFace(' %s ' % leaf_id2mlst[lf.name]) n.inner_background.color = 'white' m = TextFace(' ') m.inner_background.color = mlst2color[leaf_id2mlst[lf.name]] else: n = TextFace(' na ') n.inner_background.color = "grey" m = TextFace(' ') m.inner_background.color = "white" n.opacity = 1. n.margin_top = 2 n.margin_right = 2 n.margin_left = 0 n.margin_bottom = 2 m.margin_top = 2 m.margin_right = 0 m.margin_left = 20 m.margin_bottom = 2 lf.add_face(m, 0, position="aligned") lf.add_face(n, 1, position="aligned") # add spa typing if head: n = TextFace(' spa ') n.margin_top = 2 n.margin_right = 2 n.margin_left = 2 n.margin_bottom = 2 n.rotation = 270 n.vt_align = 2 n.hz_align = 2 n.inner_background.color = "white" n.opacity = 1. tss.aligned_header.add_face(n, column_add-2) if lf.name in leaf_id2spa: n = TextFace(' %s ' % leaf_id2spa[lf.name]) n.inner_background.color = "white" else: n = TextFace(' na ') n.inner_background.color = "grey" n.opacity = 1. n.margin_top = 2 n.margin_right = 2 n.margin_left = 2 n.margin_bottom = 2 lf.add_face(n, column_add-2, position="aligned") # add mecA typing if head: n = TextFace(' mecA ') n.margin_top = 2 n.margin_right = 2 n.margin_left = 2 n.margin_bottom = 2 n.rotation = 270 n.vt_align = 2 n.hz_align = 2 n.inner_background.color = "white" n.opacity = 1. tss.aligned_header.add_face(n, column_add-1) if lf.name in leaf_id2meca: n = TextFace(' %s ' % leaf_id2meca[lf.name]) if leaf_id2meca[lf.name] == 'Perfect': n.inner_background.color = "red" elif leaf_id2meca[lf.name] == 'Strict': n.inner_background.color = "orange" else: n.inner_background.color = "white" else: n = TextFace(' na ') n.inner_background.color = "grey" n.opacity = 1. n.margin_top = 2 n.margin_right = 2 n.margin_left = 2 n.margin_bottom = 2 lf.add_face(n, column_add-1, position="aligned") # loop to add virulence gene hits for column, protein_id in enumerate(ordered_queries): # draw labels at the top of each column if head: if show_identity_values: n = TextFace(' %s ' % str(protein_id)) n.margin_top = 2 n.margin_right = 2 n.margin_left = 2 n.margin_bottom = 2 n.rotation = 270 n.vt_align = 2 n.hz_align = 2 n.inner_background.color = "white" n.opacity = 1. tss.aligned_header.add_face(n, column+column_add) else: n = TextFace(' %s ' % str(protein_id), fsize=6) n.margin_top = 0 n.margin_right = 0 n.margin_left = 0 n.margin_bottom = 0 n.rotation = 270 n.vt_align = 2 n.hz_align = 2 n.inner_background.color = "white" n.opacity = 1. # lf.add_face(n, col, position="aligned") tss.aligned_header.add_face(n, column+column_add) # draw column content if lf.name not in leaf_id2protein_id2identity: n = TextFace(' %s ' % str(' na ')) n.opacity = 1. n.margin_top = 2 n.margin_right = 2 n.margin_left = 2 n.margin_bottom = 2 n.inner_background.color = "grey" lf.add_face(n, column+column_add, position="aligned") else: if protein_id in leaf_id2protein_id2identity[lf.name]: identity_value = float(leaf_id2protein_id2identity[lf.name][protein_id]) color = rgb2hex(m_blue.to_rgba(identity_value)) if show_identity_values: # report identity values in coloured boxes # adapt box size depending the digit width if str(identity_value) == '100.00' or str(identity_value) == '100.0': identity_value = '100' n = TextFace(" %s " % identity_value) else: n = TextFace("%.2f" % round(float(identity_value), 2)) # color text to white for dark cells if float(identity_value) > 95: n.fgcolor = "white" n.opacity = 1. n.margin_top = 2 n.margin_right = 2 n.margin_left = 2 n.margin_bottom = 2 n.inner_background.color = color lf.add_face(n, column+column_add, position="aligned") else: # draw coloured boxes without text n = TextFace(' ') n.margin_top = 0 n.margin_right = 0 n.margin_left = 0 n.margin_bottom = 0 # n.color = color n.inner_background.color = color lf.add_face(n, column+column_add, position="aligned") else: n = TextFace(' %s ' % str(' - ')) n.opacity = 1. n.margin_top = 2 n.margin_right = 2 n.margin_left = 2 n.margin_bottom = 2 n.inner_background.color = "white" lf.add_face(n, column+column_add, position="aligned") # end of first leaf: turn off header head = False # add boostrap supports for n in t1.traverse(): nstyle = NodeStyle() if n.support < 0.9: nstyle["fgcolor"] = "blue" nstyle["size"] = 6 n.set_style(nstyle) else: nstyle["fgcolor"] = "red" nstyle["size"] = 0 n.set_style(nstyle) return t1, tss
def custom_layout(self,node): if node.is_leaf(): aligned_name_face = TextFace(node.name, fgcolor='olive', fsize=12) aligned_name_face.margin_top = 5 aligned_name_face.margin_right = 5 aligned_name_face.margin_left = 5 aligned_name_face.margin_bottom = 5 aligned_name_face.hz_align = 0 #0 = left, 1 = center, 2 = right add_face_to_node(aligned_name_face, node, column=2, position='aligned') #name_face = TextFace(node.name, fgcolor='#333333', fsize=11) #name_face.margin_top = 3 #name_face.margin_right = 3 #name_face.margin_left = 3 #name_face.margin_bottom = 3 #add_face_to_node(name_face, node, column=2, position='branch-right') node.img_style['size'] = 0 #--------------------------------------------- #displaying extra categorical and numeric data if (node.name in self._tip2info): column_no = 3 for headerIndex, dataheader in enumerate(self._tip2headers): extra_data = self._tip2info[node.name][headerIndex] if isinstance( extra_data, ( int, float ) ): extra_face = BarChartFace([extra_data], width=100,height=25,colors=[self._tip2color[node.name][headerIndex]],labels=[dataheader],min_value=0.0,max_value=self._tip_max) else: extra_face = TextFace(extra_data, fsize=11, fgcolor='black') extra_face.background.color = self._tip2color[node.name][headerIndex] extra_face.margin_left = 5 extra_face.margin_top = 5 extra_face.margin_right = 5 extra_face.margin_bottom = 5 add_face_to_node(extra_face, node, column=column_no, position='aligned') #add_face_to_node(extra_face, node, column=column_no, aligned = True, position='branch-right') column_no += 1 else: #print "No data available" column_no = 3 for headerIndex, dataheader in enumerate(self._tip2headers): extra_face = TextFace("No data available", fsize=10, fgcolor='black') extra_face.margin_left = 5 extra_face.margin_top = 5 extra_face.margin_right = 5 extra_face.margin_bottom = 5 add_face_to_node(extra_face, node, column=column_no, position='aligned') column_no += 1 image_col_no = column_no #---------------------------------------------- if (node.name in self._img_chk_list): if self._img_data_dic[node.name] is not None: img_face = ImgFace(self._img_data_dic[node.name], is_url=True) #img_face = ImgFace(self._tip2info[node.name][0], is_url=True) #img_path = os.path.join("file:///home/tayeen/TayeenFolders/TreeViewer/WebTreeApp/newplugin_test/data/", "328653.jpg") #img_face = ImgFace(img_path, is_url=True) img_face.margin_top = 10 img_face.margin_right = 10 img_face.margin_left = 10 img_face.margin_bottom = 10 #add_face_to_node(img_face, node, column=3, position='branch-right') #add_face_to_node(img_face, node, column=3, aligned= True, position='branch-right') else: img_path = os.path.join("file://"+image_path, "ina.jpg") img_face = ImgFace(img_path, is_url=True) #add_face_to_node(img_face, node, column=5, position='branch-right') add_face_to_node(img_face, node, column=image_col_no, position='aligned') else: #node is not a leaf node.img_style['size'] = 4 node.img_style['shape'] = 'square' if node.name and self._custom_options["draw_internal"]: name_face = TextFace(node.name, fgcolor='grey', fsize=10) name_face.margin_top = 4 name_face.margin_right = 4 name_face.margin_left = 4 name_face.margin_bottom = 4 add_face_to_node(name_face, node, column=0, position='branch-top') if node.name in self._node2label: label_face = TextFace(self._node2label[node.name], fgcolor='DarkGreen', fsize=10) label_face.margin_top = 4 label_face.margin_right = 4 label_face.margin_left = 4 label_face.margin_bottom = 4 add_face_to_node(label_face, node, column=0, position="branch-top") if node.support and self._custom_options["draw_support"]: support_face = TextFace(node.support, fgcolor='indianred', fsize=10) support_face.margin_top = 4 support_face.margin_right = 4 support_face.margin_left = 4 support_face.margin_bottom = 4 add_face_to_node(support_face, node, column=0, position='branch-bottom') if hasattr(node, "hide") and int(node.hide) == 1: node.img_style["draw_descendants"]= False collapsed_face = faces.TextFace(" %s collapsed leaves." %len(node), \ fsize=10, fgcolor="#444", ftype="Arial") faces.add_face_to_node(collapsed_face, node, 0) else: node.img_style["draw_descendants"] = True # Parse node features features and conver them into styles. This must be done like this, since current ete version #does not allow modifying style outside the layout function. if hasattr(node, "bsize"): node.img_style["size"]= int(node.bsize) if hasattr(node, "shape"): node.img_style["shape"]= node.shape if hasattr(node, "bgcolor"): node.img_style["bgcolor"]= node.bgcolor if hasattr(node, "fgcolor"): node.img_style["fgcolor"]= node.fgcolor #parse all nodes features if hasattr(node, "bh_bgcolor"): node.img_style["bgcolor"]= node.bh_bgcolor if hasattr(node, "bh_size"): node.img_style["size"]= node.bh_size if hasattr(node, "lh_color"): node.img_style['hz_line_color'] = node.lh_color node.img_style["vt_line_color"] = node.lh_color if hasattr(node, "lh_width"): node.img_style['hz_line_width'] = node.lh_width node.img_style['vt_line_width'] = node.lh_width if hasattr(node, "lh_width") and hasattr(node, "lh_color"): for n in node.iter_descendants(): n.img_style['hz_line_color'] = node.lh_color n.img_style["vt_line_color"] = node.lh_color n.img_style['hz_line_width'] = node.lh_width n.img_style['vt_line_width'] = node.lh_width
def plot_tree_stacked_barplot( tree_file, taxon2value_list_barplot=False, header_list=False, # header stackedbarplots taxon2set2value_heatmap=False, taxon2label=False, header_list2=False, # header counts columns biodb=False, column_scale=True, general_max=False, header_list3=False, set2taxon2value_list_simple_barplot=False, set2taxon2value_list_simple_barplot_counts=True, rotate=False, taxon2description=False): ''' taxon2value_list_barplot list of lists: [[bar1_part1, bar1_part2,...],[bar2_part1, bar2_part2]] valeures de chaque liste transformes en pourcentages :param tree_file: :param taxon2value_list: :param biodb: :param exclude_outgroup: :param bw_scale: :return: ''' if biodb: from chlamdb.biosqldb import manipulate_biosqldb server, db = manipulate_biosqldb.load_db(biodb) taxon2description = manipulate_biosqldb.taxon_id2genome_description( server, biodb, filter_names=True) t1 = Tree(tree_file) # Calculate the midpoint node R = t1.get_midpoint_outgroup() # and set it as tree outgroup t1.set_outgroup(R) colors2 = [ "red", "#FFFF00", "#58FA58", "#819FF7", "#F781F3", "#2E2E2E", "#F7F8E0", 'black' ] colors = [ "#7fc97f", "#386cb0", "#fdc086", "#ffffb3", "#fdb462", "#f0027f", "#F7F8E0", 'black' ] # fdc086ff 386cb0ff f0027fff tss = TreeStyle() tss.draw_guiding_lines = True tss.guiding_lines_color = "gray" tss.show_leaf_name = False if column_scale and header_list2: import matplotlib.cm as cm from matplotlib.colors import rgb2hex import matplotlib as mpl column2scale = {} col_n = 0 for column in header_list2: values = taxon2set2value_heatmap[column].values() #print values if min(values) == max(values): min_val = 0 max_val = 1.5 * max(values) else: min_val = min(values) max_val = max(values) #print 'min-max', min_val, max_val norm = mpl.colors.Normalize(vmin=min_val, vmax=max_val) # *1.1 if col_n < 4: cmap = cm.OrRd # else: cmap = cm.YlGnBu #PuBu#OrRd m = cm.ScalarMappable(norm=norm, cmap=cmap) column2scale[column] = [m, float(max_val)] # *0.7 col_n += 1 for i, lf in enumerate(t1.iter_leaves()): #if taxon2description[lf.name] == 'Pirellula staleyi DSM 6068': # lf.name = 'Pirellula staleyi DSM 6068' # continue if i == 0: if taxon2label: n = TextFace(' ') n.margin_top = 1 n.margin_right = 1 n.margin_left = 20 n.margin_bottom = 1 n.hz_align = 2 n.vt_align = 2 n.rotation = 270 n.inner_background.color = "white" n.opacity = 1. tss.aligned_header.add_face(n, 0) col_add = 1 else: col_add = 1 if header_list: for col, header in enumerate(header_list): n = TextFace('%s' % (header)) n.margin_top = 0 n.margin_right = 1 n.margin_left = 20 n.margin_bottom = 1 n.rotation = 270 n.hz_align = 2 n.vt_align = 2 n.inner_background.color = "white" n.opacity = 1. tss.aligned_header.add_face(n, col + col_add) col_add += col + 1 if header_list3: #print 'header_list 3!' col_tmp = 0 for header in header_list3: n = TextFace('%s' % (header)) n.margin_top = 1 n.margin_right = 1 n.margin_left = 20 n.margin_bottom = 1 n.rotation = 270 n.hz_align = 2 n.vt_align = 2 n.inner_background.color = "white" n.opacity = 1. if set2taxon2value_list_simple_barplot_counts: if col_tmp == 0: col_tmp += 1 tss.aligned_header.add_face(n, col_tmp + 1 + col_add) n = TextFace(' ') tss.aligned_header.add_face(n, col_tmp + col_add) col_tmp += 2 else: tss.aligned_header.add_face(n, col_tmp + col_add) col_tmp += 1 if set2taxon2value_list_simple_barplot_counts: col_add += col_tmp else: col_add += col_tmp if header_list2: for col, header in enumerate(header_list2): n = TextFace('%s' % (header)) n.margin_top = 1 n.margin_right = 1 n.margin_left = 20 n.margin_bottom = 1 n.rotation = 270 n.hz_align = 2 n.vt_align = 2 n.inner_background.color = "white" n.opacity = 1. tss.aligned_header.add_face(n, col + col_add) col_add += col + 1 if taxon2label: try: n = TextFace('%s' % taxon2label[lf.name]) except: try: n = TextFace('%s' % taxon2label[int(lf.name)]) except: n = TextFace('-') n.margin_top = 1 n.margin_right = 1 n.margin_left = 20 n.margin_bottom = 1 n.inner_background.color = "white" n.opacity = 1. if rotate: n.rotation = 270 lf.add_face(n, 1, position="aligned") col_add = 2 else: col_add = 2 if taxon2value_list_barplot: try: val_list_of_lists = taxon2value_list_barplot[lf.name] except: val_list_of_lists = taxon2value_list_barplot[int(lf.name)] #col_count = 0 for col, value_list in enumerate(val_list_of_lists): total = float(sum(value_list)) percentages = [(i / total) * 100 for i in value_list] if col % 3 == 0: col_list = colors2 else: col_list = colors b = StackedBarFace(percentages, width=150, height=18, colors=col_list[0:len(percentages)]) b.rotation = 0 b.inner_border.color = "white" b.inner_border.width = 0 b.margin_right = 5 b.margin_left = 5 if rotate: b.rotation = 270 lf.add_face(b, col + col_add, position="aligned") #col_count+=1 col_add += col + 1 if set2taxon2value_list_simple_barplot: col_list = [ '#fc8d59', '#91bfdb', '#99d594', '#c51b7d', '#f1a340', '#999999' ] color_i = 0 col = 0 for one_set in header_list3: if color_i > 5: color_i = 0 color = col_list[color_i] color_i += 1 # values for all taxons values_lists = [ float(i) for i in set2taxon2value_list_simple_barplot[one_set].values() ] #print values_lists #print one_set value = set2taxon2value_list_simple_barplot[one_set][lf.name] if set2taxon2value_list_simple_barplot_counts: if isinstance(value, float): a = TextFace(" %s " % str(round(value, 2))) else: a = TextFace(" %s " % str(value)) a.margin_top = 1 a.margin_right = 2 a.margin_left = 5 a.margin_bottom = 1 if rotate: a.rotation = 270 lf.add_face(a, col + col_add, position="aligned") #print 'value and max', value, max(values_lists) fraction_biggest = (float(value) / max(values_lists)) * 100 fraction_rest = 100 - fraction_biggest #print 'fractions', fraction_biggest, fraction_rest b = StackedBarFace([fraction_biggest, fraction_rest], width=100, height=15, colors=[color, 'white']) b.rotation = 0 b.inner_border.color = "grey" b.inner_border.width = 0 b.margin_right = 15 b.margin_left = 0 if rotate: b.rotation = 270 if set2taxon2value_list_simple_barplot_counts: if col == 0: col += 1 lf.add_face(b, col + 1 + col_add, position="aligned") col += 2 else: lf.add_face(b, col + col_add, position="aligned") col += 1 if set2taxon2value_list_simple_barplot_counts: col_add += col else: col_add += col if taxon2set2value_heatmap: i = 0 #if not taxon2label: # col_add-=1 for col2, head in enumerate(header_list2): col_name = header_list2[i] try: value = taxon2set2value_heatmap[col_name][str(lf.name)] except: try: value = taxon2set2value_heatmap[col_name][round( float(lf.name), 2)] except: value = 0 if header_list2[i] == 'duplicates': print('dupli', lf.name, value) #print 'val----------------', value if int(value) > 0: if int(value) >= 10 and int(value) < 100: n = TextFace('%4i' % value) elif int(value) >= 100: n = TextFace('%3i' % value) else: n = TextFace('%5i' % value) n.margin_top = 1 n.margin_right = 2 n.margin_left = 5 n.margin_bottom = 1 n.hz_align = 1 n.vt_align = 1 if rotate: n.rotation = 270 n.inner_background.color = rgb2hex( column2scale[col_name][0].to_rgba( float(value))) #"orange" #print 'xaxaxaxaxa', value, if float(value) > column2scale[col_name][1]: n.fgcolor = 'white' n.opacity = 1. n.hz_align = 1 n.vt_align = 1 lf.add_face(n, col2 + col_add, position="aligned") i += 1 else: n = TextFace('') n.margin_top = 1 n.margin_right = 1 n.margin_left = 5 n.margin_bottom = 1 n.inner_background.color = "white" n.opacity = 1. if rotate: n.rotation = 270 lf.add_face(n, col2 + col_add, position="aligned") i += 1 #lf.name = taxon2description[lf.name] n = TextFace(taxon2description[lf.name], fgcolor="black", fsize=12, fstyle='italic') lf.add_face(n, 0) for n in t1.traverse(): nstyle = NodeStyle() if n.support < 1: nstyle["fgcolor"] = "black" nstyle["size"] = 6 n.set_style(nstyle) else: nstyle["fgcolor"] = "red" nstyle["size"] = 0 n.set_style(nstyle) return t1, tss
def plot_tree_text_metadata(tree_file, header2taxon2text, ordered_header_list, biodb): from chlamdb.biosqldb import manipulate_biosqldb server, db = manipulate_biosqldb.load_db(biodb) t1 = Tree(tree_file) taxon2description = manipulate_biosqldb.taxon_id2genome_description( server, biodb, filter_names=True) # Calculate the midpoint node R = t1.get_midpoint_outgroup() # and set it as tree outgroup t1.set_outgroup(R) tss = TreeStyle() tss.draw_guiding_lines = True tss.guiding_lines_color = "gray" tss.show_leaf_name = False for i, leaf in enumerate(t1.iter_leaves()): # first leaf, add headers if i == 0: for column, header in enumerate(ordered_header_list): n = TextFace('%s' % (header)) n.margin_top = 0 n.margin_right = 1 n.margin_left = 20 n.margin_bottom = 1 n.rotation = 270 n.hz_align = 2 n.vt_align = 2 n.inner_background.color = "white" n.opacity = 1. tss.aligned_header.add_face(n, column) for column, header in enumerate(ordered_header_list): text = header2taxon2text[header][int(leaf.name)] n = TextFace('%s' % text) n.margin_top = 1 n.margin_right = 1 n.margin_left = 5 n.margin_bottom = 1 n.inner_background.color = "white" n.opacity = 1. #n.rotation = 270 leaf.add_face(n, column + 1, position="aligned") # rename leaf (taxon_id => description) n = TextFace(taxon2description[leaf.name], fgcolor="black", fsize=12, fstyle='italic') leaf.add_face(n, 0) for n in t1.traverse(): # rename leaf nstyle = NodeStyle() if n.support < 1: nstyle["fgcolor"] = "black" nstyle["size"] = 6 n.set_style(nstyle) else: nstyle["fgcolor"] = "red" nstyle["size"] = 0 n.set_style(nstyle) return t1, tss
def plot_heat_tree_V1(taxid2n, tree_file, genes, taxid2st=False, leaf_label_conversion_dico=False): ''' Plot heatmap next to a tree. The order of the heatmap **MUST** be the same, as order of the leafs on the tree. The tree must be in the Newick format. If *output_file* is specified, then heat-tree will be rendered as a PNG, otherwise interactive browser will pop-up with your heat-tree. TODO ajouter en option la possibilite d'ajouter en option la valeur dans la cellule Parameters ---------- tree_file: str Path to the tree file in Newick format. The leaf node labels should be the same as as row names in the heatmap file. E.g. row1, row2. output_file: str, optional If specified the heat-tree will be rendered in that file as a PNG image, otherwise interactive browser will pop-up. **N.B.** program will wait for you to exit the browser before continuing. ''' t1 = Tree(tree_file) tss = TreeStyle() #t.populate(8) # Calculate the midpoint node R = t1.get_midpoint_outgroup() # and set it as tree outgroup t1.set_outgroup(R) # To operate with numbers efficiently import matplotlib.cm as cm from matplotlib.colors import rgb2hex import matplotlib as mpl norm = mpl.colors.Normalize(vmin=0.8, vmax=1) # map2count[map[0]][0] cmap_blue = cm.Blues m2 = cm.ScalarMappable(norm=norm, cmap=cmap_blue) leaf_number = 0 for lf in t1.iter_leaves(): leaf_number += 1 lf.branch_vertical_margin = 0 try: data = taxid2n[str(lf.name)] except: data = [0] try: st = taxid2st[lf.name] except: st = False ''' if "taxon2accession_list" not in locals(): from chlamdb.biosqldb import manipulate_biosqldb server, db = manipulate_biosqldb.load_db("k_cosson_05_16") sql = 'select taxon_id, accession from bioentry where biodatabase_id=104' data_tax = server.adaptor.execute_and_fetchall(sql,) taxon2accession_list = {} for i in data_tax: if i[0] not in taxon2accession_list: taxon2accession_list[i[0]] = [i[1]] else: taxon2accession_list[i[0]].append(i[1]) else: for taxon in taxon2accession_list: if lf.name in taxon2accession_list[taxon]: for accession in taxon2accession_list[taxon]: print lf.name, accession try: st = taxid2st[accession] data = taxid2n[accession] print 'st ok!!', st break except: continue ''' if accession2description: try: lf.name = accession2description[lf.name] except: pass if st: lf.name = lf.name + ' (' + st + ')' else: pass for col, value in enumerate(data): if leaf_number == 1: n = TextFace('%s' % (genes[col]), fsize=6) n.vt_align = 2 n.hz_align = 2 n.rotation = 270 n.margin_top = 0 n.margin_right = 0 n.margin_left = 4 n.margin_bottom = 0 n.inner_background.color = "white" n.opacity = 1. tss.aligned_header.add_face(n, col) #lf.add_face(n, col, position="aligned") if value > 0: n = TextFace(' ') n.margin_top = 0 n.margin_right = 0 n.margin_left = 0 n.margin_bottom = 0 n.inner_background.color = rgb2hex(m2.to_rgba( float(value))) #'#140718' #"#81BEF7" n.opacity = 1. lf.add_face(n, col, position="aligned") else: n = TextFace(' ') n.margin_top = 0 n.margin_right = 0 n.margin_left = 0 n.margin_bottom = 0 n.inner_background.color = "white" n.opacity = 1. lf.add_face(n, col, position="aligned") return t1, leaf_number, tss
def plot_tree_barplot(tree_file, taxon2value_list_barplot, header_list, taxon2set2value_heatmap=False, header_list2=False, column_scale=True, general_max=False, barplot2percentage=False, taxon2mlst=False): ''' display one or more barplot :param tree_file: :param taxon2value_list: :param exclude_outgroup: :param bw_scale: :param barplot2percentage: list of bool to indicates if the number are percentages and the range should be set to 0-100 :return: ''' import matplotlib.cm as cm from matplotlib.colors import rgb2hex import matplotlib as mpl if taxon2mlst: mlst_list = list(set(taxon2mlst.values())) mlst2color = dict(zip(mlst_list, get_spaced_colors(len(mlst_list)))) mlst2color['-'] = 'white' if isinstance(tree_file, Tree): t1 = tree_file else: t1 = Tree(tree_file) # Calculate the midpoint node R = t1.get_midpoint_outgroup() # and set it as tree outgroup t1.set_outgroup(R) tss = TreeStyle() value = 1 tss.draw_guiding_lines = True tss.guiding_lines_color = "gray" tss.show_leaf_name = False if column_scale and header_list2: import matplotlib.cm as cm from matplotlib.colors import rgb2hex import matplotlib as mpl column2scale = {} for column in header_list2: values = taxon2set2value_heatmap[column].values() norm = mpl.colors.Normalize(vmin=min(values), vmax=max(values)) cmap = cm.OrRd m = cm.ScalarMappable(norm=norm, cmap=cmap) column2scale[column] = m cmap = cm.YlGnBu #YlOrRd#OrRd values_lists = taxon2value_list_barplot.values() scale_list = [] max_value_list = [] for n, header in enumerate(header_list): #print 'scale', n, header data = [float(i[n]) for i in values_lists] if barplot2percentage is False: max_value = max(data) #3424182# min_value = min(data) #48.23 else: if barplot2percentage[n] is True: max_value = 100 min_value = 0 else: max_value = max(data) #3424182# min_value = min(data) #48.23 norm = mpl.colors.Normalize(vmin=min_value, vmax=max_value) m1 = cm.ScalarMappable(norm=norm, cmap=cmap) scale_list.append(m1) if not general_max: max_value_list.append(float(max_value)) else: max_value_list.append(general_max) for i, lf in enumerate(t1.iter_leaves()): #if taxon2description[lf.name] == 'Pirellula staleyi DSM 6068': # lf.name = 'Pirellula staleyi DSM 6068' # continue if i == 0: col_add = 0 if taxon2mlst: header_list = ['MLST'] + header_list for col, header in enumerate(header_list): #lf.add_face(n, column, position="aligned") n = TextFace(' ') n.margin_top = 1 n.margin_right = 2 n.margin_left = 2 n.margin_bottom = 1 n.rotation = 90 n.inner_background.color = "white" n.opacity = 1. n.hz_align = 2 n.vt_align = 2 tss.aligned_header.add_face(n, col_add + 1) n = TextFace('%s' % header) n.margin_top = 1 n.margin_right = 2 n.margin_left = 2 n.margin_bottom = 2 n.rotation = 270 n.inner_background.color = "white" n.opacity = 1. n.hz_align = 2 n.vt_align = 1 tss.aligned_header.add_face(n, col_add) col_add += 2 if header_list2: for col, header in enumerate(header_list2): n = TextFace('%s' % header) n.margin_top = 1 n.margin_right = 20 n.margin_left = 2 n.margin_bottom = 1 n.rotation = 270 n.hz_align = 2 n.vt_align = 2 n.inner_background.color = "white" n.opacity = 1. tss.aligned_header.add_face(n, col + col_add) if taxon2mlst: try: #if lf.name in leaf2mlst or int(lf.name) in leaf2mlst: n = TextFace(' %s ' % taxon2mlst[int(lf.name)]) n.inner_background.color = 'white' m = TextFace(' ') m.inner_background.color = mlst2color[taxon2mlst[int(lf.name)]] except: n = TextFace(' na ') n.inner_background.color = "grey" m = TextFace(' ') m.inner_background.color = "white" n.opacity = 1. n.margin_top = 2 n.margin_right = 2 n.margin_left = 0 n.margin_bottom = 2 m.margin_top = 2 m.margin_right = 0 m.margin_left = 2 m.margin_bottom = 2 lf.add_face(m, 0, position="aligned") lf.add_face(n, 1, position="aligned") col_add = 2 else: col_add = 0 try: val_list = taxon2value_list_barplot[lf.name] except: if not taxon2mlst: val_list = ['na'] * len(header_list) else: val_list = ['na'] * (len(header_list) - 1) for col, value in enumerate(val_list): # show value itself try: n = TextFace(' %s ' % str(value)) except: n = TextFace(' %s ' % str(value)) n.margin_top = 1 n.margin_right = 5 n.margin_left = 10 n.margin_bottom = 1 n.inner_background.color = "white" n.opacity = 1. lf.add_face(n, col_add, position="aligned") # show bar try: color = rgb2hex(scale_list[col].to_rgba(float(value))) except: color = 'white' try: percentage = (value / max_value_list[col]) * 100 #percentage = value except: percentage = 0 try: maximum_bar = ( (max_value_list[col] - value) / max_value_list[col]) * 100 except: maximum_bar = 0 #maximum_bar = 100-percentage b = StackedBarFace([percentage, maximum_bar], width=100, height=10, colors=[color, "white"]) b.rotation = 0 b.inner_border.color = "grey" b.inner_border.width = 0 b.margin_right = 15 b.margin_left = 0 lf.add_face(b, col_add + 1, position="aligned") col_add += 2 if taxon2set2value_heatmap: shift = col + col_add + 1 i = 0 for col, col_name in enumerate(header_list2): try: value = taxon2set2value_heatmap[col_name][lf.name] except: try: value = taxon2set2value_heatmap[col_name][int(lf.name)] except: value = 0 if int(value) > 0: if int(value) > 9: n = TextFace(' %i ' % int(value)) else: n = TextFace(' %i ' % int(value)) n.margin_top = 1 n.margin_right = 1 n.margin_left = 20 n.margin_bottom = 1 n.fgcolor = "white" n.inner_background.color = rgb2hex( column2scale[col_name].to_rgba( float(value))) #"orange" n.opacity = 1. lf.add_face(n, col + col_add, position="aligned") i += 1 else: n = TextFace(' ') #% str(value)) n.margin_top = 1 n.margin_right = 1 n.margin_left = 20 n.margin_bottom = 1 n.inner_background.color = "white" n.opacity = 1. lf.add_face(n, col + col_add, position="aligned") n = TextFace(lf.name, fgcolor="black", fsize=12, fstyle='italic') lf.add_face(n, 0) for n in t1.traverse(): nstyle = NodeStyle() if n.support < 1: nstyle["fgcolor"] = "black" nstyle["size"] = 6 n.set_style(nstyle) else: nstyle["fgcolor"] = "red" nstyle["size"] = 0 n.set_style(nstyle) return t1, tss
def heatmap_view(tree, orthologous_groups, save_dir): """Generates a heatmap of regulation states in all species.""" light_tree = copy.deepcopy(tree) # Tree copy for the light heatmap # Heat map settings rect_face_fgcolor = 'black' locus_tag_len = max(len(gene.locus_tag) + 5 for ortho_grp in orthologous_groups for gene in ortho_grp.genes) rect_face_width = locus_tag_len * 8 light_rect_face_width = 20 rect_face_height = 20 rotation = 90 # Sort orthologous groups by the number of regulated genes in each group orthologous_groups = filter_and_sort_orthologous_grps(orthologous_groups) # For each species and its gene in each orthologous group, draw a rectangle for node, light_node in zip(tree.get_leaves(), light_tree.get_leaves()): for i, orthologous_grp in enumerate(orthologous_groups, start=1): #get all orthologs in group matching_genes = [g for g in orthologous_grp.genes \ if g.genome.strain_name == node.name] #if there is ortholog if len(matching_genes) > 0: # Get the first ortholog from the genome in the group #this is the one with higher probability of regulation. #so this probability will be displayed for the group gene = matching_genes[0] p_regulation = gene.operon.regulation_probability p_notregulation = 1.0 - p_regulation p_absence = 0 # No ortholog from this genome else: gene = None p_regulation = 0 p_notregulation = 0 p_absence = 1 # Color of the rectangle is based on probabilities rect_face_bgcolor = rgb2hex( p_notregulation, p_regulation, p_absence) rect_face_text = ('%s [%d]' % (gene.locus_tag, gene.operon.operon_id) if gene else '') rect_face_label = {'text': rect_face_text, 'font': 'Courier', 'fontsize': 8, 'color': 'black'} # Create the rectangle rect_face = RectFace(rect_face_width, rect_face_height, rect_face_fgcolor, rect_face_bgcolor, label=rect_face_label) light_rect_face = RectFace(light_rect_face_width, rect_face_height, rect_face_fgcolor, rect_face_bgcolor, label='') rect_face.rotation = -rotation light_rect_face.rotation = -rotation # Add the rectangle to the corresponding column node.add_face(rect_face, column=i, position='aligned') light_node.add_face(light_rect_face, column=i, position='aligned') ts = TreeStyle() # Add orthologous group descriptions descriptions = ['-'.join([grp.description, str(grp.NOGs)]) for grp in orthologous_groups] max_description_len = max(map(len, descriptions)) descriptions = [ '[%d]' % i + description + ' '*(max_description_len-len(description)) for i, description in enumerate(descriptions, start=1)] for i, description in enumerate(descriptions, start=1): text_face = TextFace(description, ftype='Courier') text_face.hz_align = 1 text_face.vt_align = 1 text_face.rotation = -rotation ts.aligned_header.add_face(text_face, column=i) # Rotate the generated heatmap. ts.margin_left = 10 ts.margin_top = 20 ts.rotation = rotation ts.show_scale = False # For some reason, it can't render to PDF in color tree.render(os.path.join(save_dir, 'heatmap.svg'), tree_style=ts) light_tree.render(os.path.join(save_dir, 'heatmap_light.svg'), tree_style=ts)