Exemple #1
0
def test_label_plot():
    """Test label plot."""
    data: DataTuple = load_data(adult())
    train_test: Tuple[DataTuple, DataTuple] = train_test_split(data)
    train, _ = train_test

    save_label_plot(train, "./plots/labels.png")
Exemple #2
0
def test_metric_per_sens_attr(dataset: Dataset, classifier: InAlgorithm,
                              metric: Metric, expected_values: Dict[str,
                                                                    float]):
    """Test accuracy per sens attr."""
    data: DataTuple = load_data(dataset)
    train_test: Tuple[DataTuple, DataTuple] = train_test_split(data)
    train, test = train_test
    model: InAlgorithm = classifier
    predictions: Prediction = model.run(train, test)
    acc_per_sens = metric_per_sensitive_attribute(predictions, test, metric)
    try:
        for key, value in acc_per_sens.items():
            assert value == approx(expected_values[key], abs=0.001)
    except AssertionError:
        print({key: round(value, 3) for key, value in acc_per_sens.items()})
        raise AssertionError

    acc_per_sens = metric_per_sensitive_attribute(predictions,
                                                  test,
                                                  metric,
                                                  use_sens_name=False)
    try:
        for key, value in expected_values.items():
            # Check that the sensitive attribute name is now just 'S'.
            assert acc_per_sens[f"S_{''.join(key.split('_')[1:])}"] == approx(
                value, abs=0.001)
    except AssertionError:
        print({key: round(value, 3) for key, value in acc_per_sens.items()})
        raise AssertionError
Exemple #3
0
def test_binning():
    """Test binning."""
    data: DataTuple = em.load_data(em.adult())

    binned: DataTuple = em.bin_cont_feats(data)

    assert len([col for col in binned.x.columns
                if col not in data.x.columns]) == 25
    assert "age" not in binned.x.columns
Exemple #4
0
def test_nb_acc():
    """Test nb acc."""
    data: DataTuple = load_data(nonbinary_toy())
    train_test: Tuple[DataTuple, DataTuple] = train_test_split(data)
    train, test = train_test
    model: InAlgorithm = SVM()
    predictions: Prediction = model.run_test(train, test)
    acc_score = Accuracy().score(predictions, test)
    assert acc_score == 0.1
Exemple #5
0
def test_sequential_split():
    """Test sequential split."""
    data: DataTuple = em.load_data(em.toy())
    train: DataTuple
    test: DataTuple
    train, test, _ = em.SequentialSplit(train_percentage=0.8)(data)
    assert all(data.x.iloc[0] == train.x.iloc[0])
    assert all(data.x.iloc[-1] == test.x.iloc[-1])
    assert len(train) == 320
    assert len(test) == 80
Exemple #6
0
def test_nb_tnr():
    """Test nb tnr."""
    data: DataTuple = load_data(nonbinary_toy())
    train_test: Tuple[DataTuple, DataTuple] = train_test_split(data)
    train, test = train_test
    model: InAlgorithm = SVM()
    predictions: Prediction = model.run_test(train, test)
    tnr_score = TNR(pos_class=1).score(predictions, test)
    assert tnr_score == 1.0
    tnr_score = TNR(pos_class=2).score(predictions, test)
    assert tnr_score == 1.0
    tnr_score = TNR(pos_class=3).score(predictions, test)
    assert tnr_score == 0.0
    tnr_score = TNR(pos_class=4).score(predictions, test)
    assert tnr_score == 1.0
    tnr_score = TNR(pos_class=5).score(predictions, test)
    assert tnr_score == 1.0

    with pytest.raises(LabelOutOfBounds):
        _ = TNR(pos_class=0).score(predictions, test)

    accs = em.metric_per_sensitive_attribute(predictions, test, TNR())
    assert accs == {
        "sens_0": approx(1.0, abs=0.1),
        "sens_1": approx(1.0, abs=0.1)
    }

    model = LR()
    predictions = model.run_test(train, test)

    print([(k, z) for k, z in zip(predictions.hard.values, test.y.values)
           if k != z])

    tnr_score = TNR(pos_class=1).score(predictions, test)
    assert tnr_score == 1.0
    tnr_score = TNR(pos_class=2).score(predictions, test)
    assert tnr_score == 1.0
    tnr_score = TNR(pos_class=3).score(predictions, test)
    assert tnr_score == approx(0.7, abs=0.1)
    tnr_score = TNR(pos_class=4).score(predictions, test)
    assert tnr_score == approx(0.85, abs=0.1)
    tnr_score = TNR(pos_class=5).score(predictions, test)
    assert tnr_score == 1.0

    with pytest.raises(LabelOutOfBounds):
        _ = TNR(pos_class=0).score(predictions, test)

    tnrs = em.metric_per_sensitive_attribute(predictions, test, TNR())
    assert tnrs == {
        "sens_0": approx(1.0, abs=0.1),
        "sens_1": approx(1.0, abs=0.1)
    }
Exemple #7
0
def test_train_test_split():
    """Test train test split."""
    data: DataTuple = em.load_data(em.toy())
    train_test: Tuple[DataTuple, DataTuple] = em.train_test_split(data)
    train, test = train_test
    assert train is not None
    assert test is not None
    assert train.x.shape[0] > test.x.shape[0]
    assert train.x["a1"].values[0] == 0.2365572108691669
    assert train.x["a2"].values[0] == approx(0.008603090240657633, abs=1e-6)

    assert train.x.shape[0] == train.s.shape[0]
    assert train.s.shape[0] == train.y.shape[0]

    num_samples = len(data)

    len_default = math.floor((num_samples / 100) * 80)
    assert train.s.shape[0] == len_default
    assert test.s.shape[0] == num_samples - len_default

    len_0_9 = math.floor((num_samples / 100) * 90)
    train, test = em.train_test_split(data, train_percentage=0.9)
    assert train.s.shape[0] == len_0_9
    assert test.s.shape[0] == num_samples - len_0_9

    len_0_7 = math.floor((num_samples / 100) * 70)
    train, test = em.train_test_split(data, train_percentage=0.7)
    assert train.s.shape[0] == len_0_7
    assert test.s.shape[0] == num_samples - len_0_7

    len_0_5 = math.floor((num_samples / 100) * 50)
    train, test = em.train_test_split(data, train_percentage=0.5)
    assert train.s.shape[0] == len_0_5
    assert test.s.shape[0] == num_samples - len_0_5

    len_0_3 = math.floor((num_samples / 100) * 30)
    train, test = em.train_test_split(data, train_percentage=0.3)
    assert train.s.shape[0] == len_0_3
    assert test.s.shape[0] == num_samples - len_0_3

    len_0_1 = math.floor((num_samples / 100) * 10)
    train, test = em.train_test_split(data, train_percentage=0.1)
    assert train.s.shape[0] == len_0_1
    assert test.s.shape[0] == num_samples - len_0_1

    len_0_0 = math.floor((num_samples / 100) * 0)
    train, test = em.train_test_split(data, train_percentage=0.0)
    assert train.s.shape[0] == len_0_0
    assert train.name == "Toy - Train"
    assert test.s.shape[0] == num_samples - len_0_0
    assert test.name == "Toy - Test"
Exemple #8
0
def test_random_seed():
    """Test random seed."""
    data: DataTuple = em.load_data(em.toy())
    train_test_0: Tuple[DataTuple, DataTuple] = em.train_test_split(data)
    train_0, test_0 = train_test_0
    assert train_0 is not None
    assert test_0 is not None
    assert train_0.x.shape[0] > test_0.x.shape[0]
    assert train_0.x["a1"].values[0] == 0.2365572108691669
    assert train_0.x["a2"].values[0] == approx(0.008603090240657633, abs=1e-6)

    assert train_0.x.shape[0] == train_0.s.shape[0]
    assert train_0.s.shape[0] == train_0.y.shape[0]

    train_test_1: Tuple[DataTuple,
                        DataTuple] = em.train_test_split(data, random_seed=1)
    train_1, test_1 = train_test_1
    assert train_1 is not None
    assert test_1 is not None
    assert train_1.x.shape[0] > test_1.x.shape[0]
    assert train_1.x["a1"].values[0] == 1.3736566330173798
    assert train_1.x["a2"].values[0] == approx(0.21742296144957174, abs=1e-6)

    assert train_1.x.shape[0] == train_1.s.shape[0]
    assert train_1.s.shape[0] == train_1.y.shape[0]

    train_test_2: Tuple[DataTuple,
                        DataTuple] = em.train_test_split(data, random_seed=2)
    train_2, test_2 = train_test_2
    assert train_2 is not None
    assert test_2 is not None
    assert train_2.x.shape[0] > test_2.x.shape[0]
    assert train_2.x["a1"].values[0] == 1.2255705960148289
    assert train_2.x["a2"].values[0] == -1.208089015454192

    assert train_2.x.shape[0] == train_2.s.shape[0]
    assert train_2.s.shape[0] == train_2.y.shape[0]

    train_test_3: Tuple[DataTuple,
                        DataTuple] = em.train_test_split(data, random_seed=3)
    train_3, test_3 = train_test_3
    assert train_3 is not None
    assert test_3 is not None
    assert train_3.x.shape[0] > test_3.x.shape[0]
    assert train_3.x["a1"].values[0] == approx(0.21165963748018515, abs=1e-6)
    assert train_3.x["a2"].values[0] == -2.425137404779957

    assert train_3.x.shape[0] == train_3.s.shape[0]
    assert train_3.s.shape[0] == train_3.y.shape[0]
Exemple #9
0
def test_corels(toy_train_test: TrainTestPair) -> None:
    """Test corels."""
    model: InAlgorithm = Corels()
    assert model is not None
    assert model.name == "CORELS"

    train_toy, test_toy = toy_train_test
    with pytest.raises(RuntimeError):
        model.run(train_toy, test_toy)

    data: DataTuple = load_data(compas())
    train, test = train_test_split(data)

    predictions: Prediction = model.run(train, test)
    expected_num_pos = 428
    assert predictions.hard.values[predictions.hard.values ==
                                   1].shape[0] == expected_num_pos
    num_neg = predictions.hard.values[predictions.hard.values == 0].shape[0]
    assert num_neg == len(predictions) - expected_num_pos
Exemple #10
0
def test_dependence_measures_adult() -> None:
    """Test dependence measures."""
    data = load_data(em.adult(split="Sex"))
    train_percentage = 0.75
    unbalanced, balanced, _ = BalancedTestSplit(
        train_percentage=train_percentage)(data)

    fair_prediction = Prediction(
        hard=balanced.y["salary_>50K"])  # predict the balanced label
    unfair_prediction = Prediction(
        hard=unbalanced.y["salary_>50K"])  # predict the normal label
    extremely_unfair_prediction = Prediction(
        hard=unbalanced.s["sex_Male"])  # predict s

    # measure the dependence between s and the prediction in several ways
    assert _compute_di(fair_prediction, balanced) == approx(1, abs=1e-15)
    assert _compute_di(unfair_prediction, unbalanced) == approx(0.364,
                                                                abs=3e-3)
    assert _compute_di(extremely_unfair_prediction,
                       unbalanced) == approx(0, abs=3e-3)
    assert _compute_inv_cv(fair_prediction, balanced) == approx(0, abs=1e-15)
    assert _compute_inv_cv(unfair_prediction, unbalanced) == approx(0.199,
                                                                    abs=3e-3)
    assert _compute_inv_cv(extremely_unfair_prediction,
                           unbalanced) == approx(1, abs=3e-3)
    nmi = NMI()
    assert nmi.score(fair_prediction, balanced) == approx(0, abs=1e-15)
    assert nmi.score(unfair_prediction, unbalanced) == approx(0.0432, abs=3e-4)
    assert nmi.score(extremely_unfair_prediction,
                     unbalanced) == approx(1, abs=3e-4)
    yanovich = Yanovich()
    assert yanovich.score(fair_prediction, balanced) == approx(0, abs=1e-15)
    assert yanovich.score(unfair_prediction, unbalanced) == approx(0.0396,
                                                                   abs=3e-4)
    assert yanovich.score(extremely_unfair_prediction,
                          unbalanced) == approx(1, abs=3e-4)
    renyi = RenyiCorrelation()
    assert renyi.score(fair_prediction, balanced) == approx(0, abs=1e-15)
    assert renyi.score(unfair_prediction, unbalanced) == approx(0.216,
                                                                abs=3e-4)
    assert renyi.score(extremely_unfair_prediction,
                       unbalanced) == approx(1, abs=3e-4)
Exemple #11
0
def test_tpr_ratio_non_binary_race():
    """Test tpr ratio non binary race."""
    data: DataTuple = load_data(em.adult("Race"))
    train_test: Tuple[DataTuple, DataTuple] = train_test_split(data)
    train, test = train_test
    model: InAlgorithm = SVM()
    predictions: Prediction = model.run_test(train, test)
    tprs = em.metric_per_sensitive_attribute(predictions, test, TPR())
    assert TPR().name == "TPR"
    test_dict = {
        "race_0": approx(0.37, abs=0.01),
        "race_1": approx(0.12, abs=0.01),
        "race_2": approx(0.14, abs=0.01),
        "race_3": approx(0.12, abs=0.01),
        "race_4": approx(0.16, abs=0.01),
    }

    for key, val in tprs.items():
        assert val == test_dict[key]

    tpr_diff = em.ratio_per_sensitive_attribute(tprs)
    test_dict = {
        "race_0/race_1": approx(0.32, abs=0.1),
        "race_0/race_2": approx(0.37, abs=0.1),
        "race_0/race_3": approx(0.33, abs=0.1),
        "race_0/race_4": approx(0.44, abs=0.1),
        "race_1/race_2": approx(0.88, abs=0.1),
        "race_1/race_3": approx(0.97, abs=0.1),
        "race_1/race_4": approx(0.72, abs=0.1),
        "race_2/race_3": approx(0.91, abs=0.1),
        "race_2/race_4": approx(0.74, abs=0.1),
        "race_3/race_4": approx(0.74, abs=0.1),
    }

    for key, val in tpr_diff.items():
        assert val == test_dict[key]
Exemple #12
0
def test_prop_train_test_split():
    """Test prop train test split."""
    data: DataTuple = em.load_data(em.toy())
    train: DataTuple
    test: DataTuple
    train, test, _ = ProportionalSplit(train_percentage=0.8)(data, split_id=0)
    assert train is not None
    assert test is not None
    assert train.x.shape[0] > test.x.shape[0]
    assert train.x["a1"].values[0] == -0.7135614558562237
    assert train.x["a2"].values[0] == 1.1211390799513148

    assert train.x.shape[0] == train.s.shape[0]
    assert train.s.shape[0] == train.y.shape[0]

    NUM_SAMPLES = len(data)
    len_default = math.floor((NUM_SAMPLES / 100) * 80)
    assert train.s.shape[0] == len_default
    assert test.s.shape[0] == NUM_SAMPLES - len_default

    # assert that the proportion of s=0 to s=1 has remained the same (and also test for y=0/y=1)
    assert np.count_nonzero(train.s.to_numpy() == 0) == round(
        0.8 * np.count_nonzero(data.s.to_numpy() == 0))
    assert np.count_nonzero(train.y.to_numpy() == 0) == round(
        0.8 * np.count_nonzero(data.y.to_numpy() == 0))

    len_0_9 = math.floor((NUM_SAMPLES / 100) * 90)
    train, test, _ = ProportionalSplit(train_percentage=0.9)(data, split_id=0)
    assert train.s.shape[0] == len_0_9
    assert test.s.shape[0] == NUM_SAMPLES - len_0_9
    assert np.count_nonzero(train.s.to_numpy() == 0) == approx(round(
        0.9 * np.count_nonzero(data.s.to_numpy() == 0)),
                                                               abs=1)
    assert np.count_nonzero(train.y.to_numpy() == 0) == approx(round(
        0.9 * np.count_nonzero(data.y.to_numpy() == 0)),
                                                               abs=1)

    len_0_7 = math.floor((NUM_SAMPLES / 100) * 70)
    train, test, _ = ProportionalSplit(train_percentage=0.7)(data, split_id=0)
    assert train.s.shape[0] == len_0_7
    assert test.s.shape[0] == NUM_SAMPLES - len_0_7
    assert np.count_nonzero(train.s.to_numpy() == 0) == approx(round(
        0.7 * np.count_nonzero(data.s.to_numpy() == 0)),
                                                               abs=1)
    assert np.count_nonzero(train.y.to_numpy() == 0) == approx(round(
        0.7 * np.count_nonzero(data.y.to_numpy() == 0)),
                                                               abs=1)

    len_0_5 = math.floor((NUM_SAMPLES / 100) * 50)
    train, test, _ = ProportionalSplit(train_percentage=0.5)(data, split_id=0)
    assert train.s.shape[0] == len_0_5
    assert test.s.shape[0] == NUM_SAMPLES - len_0_5

    len_0_3 = math.floor((NUM_SAMPLES / 100) * 30)
    train, test, _ = ProportionalSplit(train_percentage=0.3)(data, split_id=0)
    assert train.s.shape[0] == len_0_3
    assert test.s.shape[0] == NUM_SAMPLES - len_0_3

    len_0_1 = math.floor((NUM_SAMPLES / 100) * 10)
    train, test, _ = ProportionalSplit(train_percentage=0.1)(data, split_id=0)
    assert train.s.shape[0] == len_0_1
    assert test.s.shape[0] == NUM_SAMPLES - len_0_1

    len_0_0 = math.floor((NUM_SAMPLES / 100) * 0)
    train, test, _ = ProportionalSplit(train_percentage=0.0)(data, split_id=0)
    assert train.s.shape[0] == len_0_0
    assert train.name == "Toy - Train"
    assert test.s.shape[0] == NUM_SAMPLES - len_0_0
    assert test.name == "Toy - Test"