Exemple #1
0
def prime_divisors(n):
    try:
        return PDS[n]
    except KeyError:
        #with euler_tools.Watch('PRIME DIVISORS %s' % n):
        pds = euler_tools.prime_divisors(n)
        PDS[n] = pds
        return pds
Exemple #2
0
def keys(n):
    dice = sieve(n)
    p = 1
    for m in range(1, n + 1):
        o = sum([d for d in dice[:m] if d == 1])
        if p + 1 == o:
            print(m, o, euler_tools.prime_divisors(m))
            p = o
    return None
Exemple #3
0
def replace(factorization, factor, limit):
    _factorization = copy.deepcopy(factorization)
    for i in range(2, factor):
        factorization[factor] = 0

        pds = euler_tools.prime_divisors(i)
        for pd in pds:
            factorization[pd] += 1

        print(factor, i, pds, factorization, d(factorization),
              d(_factorization))

        if 2 * limit < d(factorization):
            return factorization, True
        else:
            factorization = copy.deepcopy(_factorization)

    return _factorization, False
Exemple #4
0
def prime_divisor(i, primes):
    s = time.time()
    pds = euler_tools.prime_divisors(i, primes)
    e = time.time() - s
    return pds, e
Exemple #5
0
def check_x(x, nds):
    xds = euler_tools.prime_divisors(x**3 - 1)
    for nd in nds:
        if nd not in xds:
            return False
    return True
Exemple #6
0
def check(n):
    for x in check_n(n):
        print(x, euler_tools.prime_divisors_2(n),
              euler_tools.prime_divisors(x**3 - 1))
Exemple #7
0

def combin(n, k):
    return int(fact(n) / (fact(k) * fact(n - k)))


def product(x):
    p = 1
    for _x in x:
        p *= _x
    return p


def num_divisors(num_primes):
    return 1 + sum([combin(num_primes, n) for n in range(1, num_primes + 1)])


# def pseudo_sqrt(n):
# index = len(all_divisors(n))/2-1

print(euler_tools.prime_divisors(3102), 3102**0.5)

print(PRIMES, product(PRIMES), product(PRIMES)**0.5)

#p = product(PRIMES)

#d = euler_tools.all_divisors(p)

#print(d, len(d), d.index(42))

print(num_divisors(len(PRIMES)) / 2 - 1)
Exemple #8
0
                if x.is_integer() and y.is_integer(
                ) and p < p_max and not seen[(x, y)]:
                    print(a, b, c, x, y, p, area)
                    triples += p
                    seen[(x, y)] = True
                else:
                    triples += 0

            else:
                triples += 0
        #print(max_p, max_p/p_max)
        m += 1

    return triples


N = 5
P = 1e6

#triples = pythag_triples(N, P)

#print(triples)

print(coprime(516309057, 894260792))
print(coprime(516309057, 1032607092))
print(coprime(894260792, 1032607092))

print(euler_tools.prime_divisors(516309057))
print(euler_tools.prime_divisors(894260792))
print(euler_tools.prime_divisors(1032607092))