Exemple #1
0
def max_prime_list(pair):
    a, b = pair
    prime_seq_len = 0
    n = 0
    while n < b:
        q = n**2 + a*n + b
        if q > 1 and is_prime(q):
            prime_seq_len += 1
            n += 1
        else:
            break
    return prime_seq_len
Exemple #2
0
def extend_right(right):
    candidates = [int(str(n) + str(p)) for p in right for n in range(1,10)]
    return [p for p in candidates if is_prime(p)]
Exemple #3
0
def extend_left(left):
    candidates = [a*10 + b for a in left for b in [1, 3, 7, 9]]
    return [p for p in candidates if is_prime(p)]
Exemple #4
0
def extend(left, right):
    candidates = [a*10 + b%10 for a in left for b in right if str(a)[1:] == str(b)[:-1]]
    return [p for p in candidates if is_prime(p)]
Exemple #5
0
#By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13,
#we can see that the 6th prime is 13.

#What is the 10001st prime number?

from eulermath import is_prime
import time

number_prime_to_find = 10001
prime_count = 1
i = 3

t0 = time.time()
while True:
    if is_prime(i):
        prime_count += 1
        if prime_count == number_prime_to_find:
            break
    i += 2
t1 = time.time()
print "The " + str(number_prime_to_find) + "th prime is", i
print t1 - t0