Exemple #1
0
 def break_points_timestamp(self, epoch):
     """Transform breaking point value into a date of the from YYYYMMDD """
     converter = TimeBaseDays(epoch)
     return numpy.array([
         '{0.year:4d}-{0.month:02d}-{0.day:02d}'.format(
             converter.number_to_datetime(int(number)))
         for number in self.break_time
     ])  #, dtype='datetime64[D]')
Exemple #2
0
def early_look_grid_batch(
        storage_climatology, storage_large_scale, storage_local, outputfiles,
        time_indices, covariates_descriptor, insitu_biases, breakpoints_file,
        global_biases, global_biases_group_list, compute_uncertainties, method,
        compute_sample, sample_size, compute_prior_sample):
    """Produce 'early look' NetCDF output files without loading or gridding uncertainty information
    
    For inspection of analysis output prior to the final gridding step.
    
    """

    from eustace.analysis.advanced_standard.fileio.output_projector import Projector

    print 'VERSION: {0}'.format(get_revision_id_for_module(eustace))

    # Build analysis system
    analysissystem = AnalysisSystem_EUSTACE(
        storage_climatology, storage_large_scale, storage_local,
        covariates_descriptor, insitu_biases, breakpoints_file, global_biases,
        global_biases_group_list, compute_uncertainties, method)

    grid_resolution = [
        180. / definitions.GLOBAL_FIELD_SHAPE[1],
        360. / definitions.GLOBAL_FIELD_SHAPE[2]
    ]

    latitudes = numpy.linspace(-90. + grid_resolution[0] / 2.,
                               90. - grid_resolution[0] / 2,
                               num=definitions.GLOBAL_FIELD_SHAPE[1])
    longitudes = numpy.linspace(-180. + grid_resolution[1] / 2.,
                                180. - grid_resolution[1] / 2,
                                num=definitions.GLOBAL_FIELD_SHAPE[2])

    timebase = TimeBaseDays(eustace.timeutils.epoch.EPOCH)

    processdates = [
        timebase.number_to_datetime(daynumber) for daynumber in time_indices
    ]

    cell_sampling = [1, 1]
    blocking = 10

    # thinned set of sample indices for inclusion in output product

    climatology_projector = None
    large_scale_projector = None
    local_projector = None

    for (inner_index, time_index, processdate) in zip(range(len(time_indices)),
                                                      time_indices,
                                                      processdates):
        print time_index
        # Configure output grid
        outputstructure = OutputRectilinearGridStructure(time_index,
                                                         processdate,
                                                         latitudes=latitudes,
                                                         longitudes=longitudes)

        # climatology component
        print 'Evaluating: climatology'
        if climatology_projector is None:
            climatology_projector = Projector(latitudes, longitudes,
                                              grid_resolution, time_index,
                                              cell_sampling, blocking)
            climatology_projector.set_component(analysissystem.components[0])

        climatology_projector.update_time_index(time_index, keep_design=False)
        climatology_projector.evaluate_design_matrix()

        climatology_expected_value = climatology_projector.project_expected_value(
        ).reshape((-1, 1))

        # large scale component
        print 'Evaluating: large-scale'
        if large_scale_projector is None:
            large_scale_projector = Projector(latitudes, longitudes,
                                              grid_resolution, time_index,
                                              cell_sampling, blocking)
            large_scale_projector.set_component(analysissystem.components[1])

        large_scale_projector.update_time_index(time_index, keep_design=False)
        large_scale_projector.evaluate_design_matrix()

        large_scale_expected_value = large_scale_projector.project_expected_value(
        ).reshape((-1, 1))

        # local component - time handling updates state to new time but does not recompute the design matrix
        print 'Evaluating: local'
        if local_projector is None:
            local_projector = Projector(latitudes, longitudes, grid_resolution,
                                        time_index, cell_sampling, blocking)
            local_projector.set_component(analysissystem.components[2])
            local_projector.evaluate_design_matrix()
        else:
            local_projector.update_time_index(time_index, keep_design=True)
            local_projector.set_component(analysissystem.components[2],
                                          keep_design=True)

        print analysissystem.components

        local_expected_value = local_projector.project_expected_value(
        ).reshape((-1, 1))

        # Save results
        outputfile = outputfiles[inner_index]
        print outputfile
        # main merged product output files
        filebuilder = FileBuilderGlobalField(
            outputfile, eustace.timeutils.epoch.days_since_epoch(processdate),
            'EUSTACE Analysis', get_revision_id_for_module(eustace),
            definitions.TAS.name, '', 'Provisional output', __name__, '')

        field_definition_tas = definitions.OutputVariable.from_template(
            definitions.TEMPLATE_TEMPERATURE,
            'tas',
            quantity='average',
            cell_methods='time: mean')
        field_definition_tas_climatology = definitions.OutputVariable.from_template(
            definitions.TEMPLATE_TEMPERATURE,
            'tas_climatology',
            quantity='average',
            cell_methods='time: mean')
        field_definition_tas_large_scale = definitions.OutputVariable.from_template(
            definitions.TEMPLATE_PERTURBATION,
            'tas_large_scale',
            quantity='average',
            cell_methods='time: mean')
        field_definition_tas_daily_local = definitions.OutputVariable.from_template(
            definitions.TEMPLATE_PERTURBATION,
            'tas_daily_local',
            quantity='average',
            cell_methods='time: mean')

        result_expected_value = climatology_expected_value + large_scale_expected_value + local_expected_value
        filebuilder.add_global_field(
            field_definition_tas,
            result_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(
            field_definition_tas_climatology,
            climatology_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(
            field_definition_tas_large_scale,
            large_scale_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(
            field_definition_tas_daily_local,
            local_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.save_and_close()

        print "Memory usage (MB):", psutil.Process(
            os.getpid()).memory_info().rss / (1024 * 1024)
Exemple #3
0
def output_grid_batch(storage_climatology, storage_large_scale, storage_local,
                      outputfiles, climatologyfiles, largescalefiles,
                      localfiles, time_indices, covariates_descriptor,
                      insitu_biases, breakpoints_file, global_biases,
                      global_biases_group_list, compute_uncertainties, method,
                      compute_sample, sample_size, compute_prior_sample):

    from eustace.analysis.advanced_standard.fileio.output_projector import Projector

    variance_ratio_upper_bound = 1.0

    print 'VERSION: {0}'.format(get_revision_id_for_module(eustace))

    # Build analysis system
    analysissystem = AnalysisSystem_EUSTACE(
        storage_climatology, storage_large_scale, storage_local,
        covariates_descriptor, insitu_biases, breakpoints_file, global_biases,
        global_biases_group_list, compute_uncertainties, method)

    grid_resolution = [
        180. / definitions.GLOBAL_FIELD_SHAPE[1],
        360. / definitions.GLOBAL_FIELD_SHAPE[2]
    ]

    latitudes = numpy.linspace(-90. + grid_resolution[0] / 2.,
                               90. - grid_resolution[0] / 2,
                               num=definitions.GLOBAL_FIELD_SHAPE[1])
    longitudes = numpy.linspace(-180. + grid_resolution[1] / 2.,
                                180. - grid_resolution[1] / 2,
                                num=definitions.GLOBAL_FIELD_SHAPE[2])

    timebase = TimeBaseDays(eustace.timeutils.epoch.EPOCH)
    #processdates = [datetime_numeric.build( timebase.number_to_datetime(daynumber) ) for daynumber in time_indices]
    processdates = [
        timebase.number_to_datetime(daynumber) for daynumber in time_indices
    ]

    cell_sampling = [1, 1]
    blocking = 10

    # thinned set of sample indices for inclusion in output product
    sample_indices = range(definitions.GLOBAL_SAMPLE_SHAPE[3])

    climatology_projector = None
    large_scale_projector = None
    local_projector = None

    for (inner_index, time_index, processdate) in zip(range(len(time_indices)),
                                                      time_indices,
                                                      processdates):
        print time_index
        # Configure output grid
        outputstructure = OutputRectilinearGridStructure(time_index,
                                                         processdate,
                                                         latitudes=latitudes,
                                                         longitudes=longitudes)

        # climatology component
        print 'Evaluating: climatology'
        if climatology_projector is None:
            climatology_projector = Projector(latitudes, longitudes,
                                              grid_resolution, time_index,
                                              cell_sampling, blocking)
            climatology_projector.set_component(analysissystem.components[0])

        climatology_projector.update_time_index(time_index, keep_design=False)
        climatology_projector.evaluate_design_matrix()

        climatology_expected_value = climatology_projector.project_expected_value(
        ).reshape((-1, 1))
        climatology_uncertainties = climatology_projector.project_sample_deviation(
        )
        climatology_samples = climatology_projector.project_sample_values(
            sample_indices=sample_indices) + climatology_expected_value
        climatology_unconstraint = numpy.minimum(
            climatology_uncertainties**2 /
            climatology_projector.project_sample_deviation(prior=True)**2,
            variance_ratio_upper_bound)

        # large scale component
        print 'Evaluating: large-scale'
        if large_scale_projector is None:
            large_scale_projector = Projector(latitudes, longitudes,
                                              grid_resolution, time_index,
                                              cell_sampling, blocking)
            large_scale_projector.set_component(analysissystem.components[1])

        large_scale_projector.update_time_index(time_index, keep_design=False)
        large_scale_projector.evaluate_design_matrix()

        large_scale_expected_value = large_scale_projector.project_expected_value(
        ).reshape((-1, 1))
        large_scale_uncertainties = large_scale_projector.project_sample_deviation(
        )
        large_scale_samples = large_scale_projector.project_sample_values(
            sample_indices=sample_indices) + large_scale_expected_value
        large_scale_unconstraint = numpy.minimum(
            large_scale_uncertainties**2 /
            large_scale_projector.project_sample_deviation(prior=True)**2,
            variance_ratio_upper_bound)

        # local component - time handling updates state to new time but does not recompute the design matrix
        print 'Evaluating: local'
        if local_projector is None:
            local_projector = Projector(latitudes, longitudes, grid_resolution,
                                        time_index, cell_sampling, blocking)
            local_projector.set_component(analysissystem.components[2])
            local_projector.evaluate_design_matrix()
        else:
            local_projector.update_time_index(time_index, keep_design=True)
            local_projector.set_component(analysissystem.components[2],
                                          keep_design=True)

        print analysissystem.components

        local_expected_value = local_projector.project_expected_value(
        ).reshape((-1, 1))
        local_uncertainties = local_projector.project_sample_deviation()
        local_samples = local_projector.project_sample_values(
            sample_indices=sample_indices) + local_expected_value

        local_unconstraint = numpy.minimum(
            local_uncertainties**2 /
            local_projector.project_sample_deviation(prior=True)**2,
            variance_ratio_upper_bound)

        # Save results
        outputfile = outputfiles[inner_index]
        print outputfile
        # main merged product output files
        filebuilder = FileBuilderGlobalField(
            outputfile, eustace.timeutils.epoch.days_since_epoch(processdate),
            'EUSTACE Analysis', get_revision_id_for_module(eustace),
            definitions.TAS.name, '', 'Provisional output', __name__, '')

        result_expected_value = climatology_expected_value + large_scale_expected_value + local_expected_value
        result_expected_uncertainties = numpy.sqrt(
            climatology_uncertainties**2 + large_scale_uncertainties**2 +
            local_uncertainties**2)
        climatology_fraction = local_unconstraint  # defined as ratio of posterior to prior variance in local component

        filebuilder.add_global_field(
            definitions.TAS,
            result_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(
            definitions.TASUNCERTAINTY,
            result_expected_uncertainties.reshape(
                definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(
            definitions.TAS_OBSERVATION_INFLUENCE,
            1.0 - climatology_fraction.reshape(definitions.GLOBAL_FIELD_SHAPE))

        for index in range(definitions.GLOBAL_SAMPLE_SHAPE[3]):
            variable = copy.deepcopy(definitions.TASENSEMBLE)
            variable.name = variable.name + '_' + str(index)
            selected_sample = (climatology_samples[:, index] +
                               large_scale_samples[:, index] +
                               local_samples[:, index]).ravel()
            filebuilder.add_global_field(
                variable,
                selected_sample.reshape(definitions.GLOBAL_FIELD_SHAPE))

        filebuilder.save_and_close()

        # climatology only output
        climatologyfile = climatologyfiles[inner_index]
        filebuilder = FileBuilderGlobalField(
            climatologyfile,
            eustace.timeutils.epoch.days_since_epoch(processdate),
            'EUSTACE Analysis', get_revision_id_for_module(eustace),
            definitions.TAS.name, '',
            'Provisional component output - climatology', __name__, '')

        filebuilder.add_global_field(
            definitions.TAS,
            climatology_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(
            definitions.TASUNCERTAINTY,
            climatology_uncertainties.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(
            definitions.TAS_OBSERVATION_INFLUENCE, 1.0 -
            climatology_unconstraint.reshape(definitions.GLOBAL_FIELD_SHAPE))

        filebuilder.save_and_close()

        # large scale only output
        largescalefile = largescalefiles[inner_index]
        filebuilder = FileBuilderGlobalField(
            largescalefile,
            eustace.timeutils.epoch.days_since_epoch(processdate),
            'EUSTACE Analysis', get_revision_id_for_module(eustace),
            definitions.TAS.name, '',
            'Provisional component output - large scale', __name__, '')

        filebuilder.add_global_field(
            definitions.TASPERTURBATION,
            large_scale_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(
            definitions.TASUNCERTAINTY,
            large_scale_uncertainties.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(
            definitions.TAS_OBSERVATION_INFLUENCE, 1.0 -
            large_scale_unconstraint.reshape(definitions.GLOBAL_FIELD_SHAPE))

        filebuilder.save_and_close()

        # local only output
        localfile = localfiles[inner_index]
        filebuilder = FileBuilderGlobalField(
            localfile, eustace.timeutils.epoch.days_since_epoch(processdate),
            'EUSTACE Analysis', get_revision_id_for_module(eustace),
            definitions.TAS.name, '', 'Provisional component output - local',
            __name__, '')

        filebuilder.add_global_field(
            definitions.TASPERTURBATION,
            local_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(
            definitions.TASUNCERTAINTY,
            local_uncertainties.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(
            definitions.TAS_OBSERVATION_INFLUENCE,
            1.0 - local_unconstraint.reshape(definitions.GLOBAL_FIELD_SHAPE))

        filebuilder.save_and_close()

        print "Memory usage (MB):", psutil.Process(
            os.getpid()).memory_info().rss / (1024 * 1024)
Exemple #4
0
    def test_run_idl(self):

        outputfile = tempfile.NamedTemporaryFile(
            prefix=FILENAMES_OUTPUT[0][1] + '_', suffix='.nc')

        # Should be updated to final directory for parameters
        model = ModelLand([
            '/gws/nopw/j04/eustace/users/ejn2/Output/sat_lsat/May2017/MYG_model1_coefs.txt',
            '/gws/nopw/j04/eustace/users/ejn2/Output/sat_lsat/May2017/MYG_model2_coefs.txt',
            '/gws/nopw/j04/eustace/users/ejn2/Output/sat_lsat/May2017/MYG_model3_coefs.txt'
        ], .2, 3.)

        model.run_idl(
            [[tempfile.gettempdir() + '/',
              os.path.basename(outputfile.name)]], FILENAMES_INPUT)

        #check netcdf output produced something
        dataset = netCDF4.Dataset(outputfile.name)

        lat = dataset.variables['lat']
        self.assertEqual('latitude', lat.standard_name)
        lat = dataset.variables['lon']
        self.assertEqual('longitude', lat.standard_name)
        tasmin = dataset.variables['tasmin']
        self.assertEqual('air_temperature', tasmin.standard_name)
        self.assertEqual('Minimum daily surface air temperature (K)',
                         tasmin.long_name)
        tasmax = dataset.variables['tasmax']
        self.assertEqual('air_temperature', tasmax.standard_name)
        self.assertEqual('Maximum daily surface air temperature (K)',
                         tasmax.long_name)
        unc_rand_tasmin = dataset.variables['unc_rand_tasmin']
        self.assertEqual(
            'Random uncertainty on minimum daily surface air temperature (K)',
            unc_rand_tasmin.long_name)
        unc_rand_tasmax = dataset.variables['unc_rand_tasmax']
        self.assertEqual(
            'Random uncertainty on maximum daily surface air temperature (K)',
            unc_rand_tasmax.long_name)
        unc_corr_atm_tasmin = dataset.variables['unc_corr_atm_tasmin']
        self.assertEqual(
            'Locally correlated uncertainty (atmospheric scale lengths) on minimum daily surface air temperature (K)',
            unc_corr_atm_tasmin.long_name)
        unc_corr_sfc_tasmin = dataset.variables['unc_corr_sfc_tasmin']
        self.assertEqual(
            'Locally correlated uncertainty (surface scale lengths) on minimum daily surface air temperature (K)',
            unc_corr_sfc_tasmin.long_name)
        unc_corr_atm_tasmax = dataset.variables['unc_corr_atm_tasmax']
        self.assertEqual(
            'Locally correlated uncertainty (atmospheric scale lengths) on maximum daily surface air temperature (K)',
            unc_corr_atm_tasmax.long_name)
        unc_corr_sfc_tasmax = dataset.variables['unc_corr_sfc_tasmax']
        self.assertEqual(
            'Locally correlated uncertainty (surface scale lengths) on maximum daily surface air temperature (K)',
            unc_corr_sfc_tasmax.long_name)
        unc_sys_tasmin = dataset.variables['unc_sys_tasmin']
        self.assertEqual(
            'Systematic uncertainty on minimum daily surface air temperature (K)',
            unc_sys_tasmin.long_name)
        unc_sys_tasmax = dataset.variables['unc_sys_tasmax']
        self.assertEqual(
            'Systematic uncertainty on maximum daily surface air temperature (K)',
            unc_sys_tasmax.long_name)
        tasmin_model_number = dataset.variables['tasmin_model_number']
        self.assertEqual(
            'Model number used for estimating Tmin from satellite data',
            tasmin_model_number.long_name)
        tasmax_model_number = dataset.variables['tasmax_model_number']
        self.assertEqual(
            'Model number used for estimating Tmax from satellite data',
            tasmax_model_number.long_name)

        file_time = dataset.variables['time']
        self.assertEqual('time', file_time.standard_name)
        self.assertEqual('Time (days)', file_time.long_name)
        t = TimeBaseDays(EPOCH)
        file_date = t.number_to_datetime(int(file_time[0]))
        self.assertEqual(datetime.strptime('20110104', '%Y%m%d'), file_date)