def test_custom_file_no_units(self, tmpdir): test_data_no_units = {'physical_property': {'some_property': {'H': 1}}} filename = self._dump_data(test_data_no_units, tmpdir, 'data_no_units.json') with pytest.raises(ValueError): get_reference_data(collection=filename, physical_property='some_property')
def test_custom_file_no_physical_property(self, tmpdir): test_data_no_physical_property = { 'not_physical_property': { 'size': {'cat': 1, '__units__': 'meter'}, 'weight': {'cat': 4, '__units__': 'kg'}}} filename = self._dump_data(test_data_no_physical_property, tmpdir, 'no_physical_property_data.json') with pytest.raises(AttributeError): get_reference_data(collection=filename, physical_property='size')
def test_custom_file_wrong_property(self, tmpdir): test_data_wrong_property = { 'physical_property': { 'size': {'cat': 1, '__units__': 'meter'}, 'weight': {'cat': 4, '__units__': 'kg'}}} filename = self._dump_data(test_data_wrong_property, tmpdir, 'data_with_size_and_weight.json') with pytest.raises(ValueError): get_reference_data(collection=filename, physical_property='wrong_property')
def test_ref_scattering_length(self): data = get_reference_data( collection='Sears1992', physical_property='coherent_scattering_length') assert data['Ba'].units == ureg['fm'] assert data['Hg'].magnitude == pytest.approx(12.692) assert data['Sm'].magnitude == pytest.approx(complex(0.80, -1.65))
def test_custom_file(self, tmpdir, animal_data, physical_property): filename = self._dump_data(animal_data, tmpdir, 'good_data.json') loaded_data = get_reference_data(collection=filename, physical_property=physical_property) animal_properties = animal_data['physical_property'] for animal in 'cat', 'dog': assert loaded_data[animal].magnitude == pytest.approx( animal_properties[physical_property][animal]) assert (loaded_data[animal].units == animal_properties[physical_property]['__units__'])
def test_ref_cross_section(self): data = get_reference_data(collection='BlueBook', physical_property='coherent_cross_section') assert data['Ca'].units == ureg['barn'] assert data['Cl'].magnitude == pytest.approx(11.5257)
def test_bad_physical_property(self): with pytest.raises(ValueError): get_reference_data(physical_property='not-a-real-property')
def test_bad_collection(self): with pytest.raises(ValueError): get_reference_data(collection='not-a-real-label')
def calculate_structure_factor( self, scattering_lengths: Union[str, Dict[str, Quantity]] = 'Sears1992', dw: Optional[DebyeWaller] = None, ) -> StructureFactor: """ Calculate the one phonon inelastic scattering for neutrons at each q-point Parameters ---------- scattering_lengths Dataset of coherent scattering length for each element in the structure. This may be provided in 3 ways: - A string naming an appropriate data collection packaged with Euphonic (including the default value 'Sears1992'). This will be passed to the ``collection`` argument of :obj:`euphonic.util.get_reference_data()`. - A string filename for a user's customised data file in the same format as those packaged with Euphonic. - An explicit dictionary of float Quantity, giving spin- and isotope-averaged coherent scattering length for each element in the structure, e.g.:: {'O': 5.803*ureg('fm'), 'Zn': 5.680*ureg('fm')} dw Data for thermal motion effects. Typically this is computed over a converged Monkhort-Pack grid, which need not correspond to the q-points of this QpointPhononModes object. Returns ------- sf An object containing the structure factor for each q-point and phonon mode Notes ----- This function calculates :math:`|F(Q, \\nu)|^2` per unit cell, where :math:`F(Q, \\nu)` is defined as [1]_: .. math:: F(Q, \\nu) = \\frac{b_\\kappa}{M_{\\kappa}^{1/2}\\omega_{q\\nu}^{1/2}} \\ [Q\\cdot\\epsilon_{q\\nu\\kappa\\alpha}]e^{iQ{\\cdot}r_\\kappa}e^{-W} Where :math:`\\nu` runs over phonon modes, :math:`\\kappa` runs over atoms, :math:`\\alpha` runs over the Cartesian directions, :math:`b_\\kappa` is the coherent neutron scattering length, :math:`M_{\\kappa}` is the atom mass, :math:`r_{\\kappa}` is the vector to atom :math:`\\kappa` in the unit cell, :math:`\\epsilon_{q\\nu\\kappa\\alpha}` are the eigevectors, :math:`\\omega_{q\\nu}` are the frequencies and :math:`e^{-W}` is the Debye-Waller factor. Note that a factor N for the number of unit cells in the sample hasn't been included, so the returned structure factor is per unit cell. .. [1] M.T. Dove, Structure and Dynamics, Oxford University Press, Oxford, 2003, 225-226 """ if isinstance(scattering_lengths, str): scattering_length_data = get_reference_data( collection=scattering_lengths, physical_property='coherent_scattering_length') elif isinstance(scattering_lengths, dict): scattering_length_data = scattering_lengths sl = [ scattering_length_data[x].to('bohr').magnitude for x in self.crystal.atom_type ] # Calculate normalisation factor norm_factor = sl / np.sqrt(self.crystal._atom_mass) # Calculate the exp factor for all atoms and qpts. atom_r is in # fractional coords, so Qdotr = 2pi*qh*rx + 2pi*qk*ry... exp_factor = np.exp( 1J * 2 * math.pi * np.einsum('ij,kj->ik', self.qpts, self.crystal.atom_r)) # Eigenvectors are in Cartesian so need to convert hkl to # Cartesian by computing dot with hkl and reciprocal lattice recip = self.crystal.reciprocal_cell().to('1/bohr').magnitude Q = np.einsum('ij,jk->ik', self.qpts, recip) # Calculate dot product of Q and eigenvectors for all branches # atoms and q-points eigenv_dot_q = np.einsum('ijkl,il->ijk', np.conj(self.eigenvectors), Q) # Calculate Debye-Waller factors temperature = None if dw: temperature = dw.temperature if dw.crystal.n_atoms != self.crystal.n_atoms: raise ValueError( ('The DebyeWaller object used as dw is not ' 'compatible with the QPointPhononModes object (they' ' have a different number of atoms)')) dw_factor = np.exp( -np.einsum('jkl,ik,il->ij', dw._debye_waller, Q, Q)) exp_factor *= dw_factor # Multiply Q.eigenvector, exp factor and normalisation factor term = np.einsum('ijk,ik,k->ij', eigenv_dot_q, exp_factor, norm_factor) # Take mod squared and divide by frequency to get intensity sf = np.real( np.absolute(term * np.conj(term)) / np.absolute(self._frequencies)) return StructureFactor( self.crystal, self.qpts, self.frequencies, sf * ureg('bohr**2').to(self.crystal.cell_vectors.units**2), temperature=temperature)
def sample_sphere_structure_factor( fc: ForceConstants, mod_q: Quantity, dw: DebyeWaller = None, dw_spacing: Quantity = 0.025 * ureg('1/angstrom'), temperature: Optional[Quantity] = 273. * ureg['K'], sampling: str = 'golden', npts: int = 1000, jitter: bool = False, energy_bins: Quantity = None, scattering_lengths: Union[dict, str] = 'Sears1992', **calc_modes_args ) -> Spectrum1D: """Sample structure factor, averaging over a sphere of constant |q| (Specifically, this is the one-phonon inelastic-scattering structure factor as implemented in QpointPhononModes.calculate_structure_factor().) Parameters ---------- fc Force constant data for system mod_q scalar radius of sphere from which vector q samples are taken dw Debye-Waller exponent used for evaluation of scattering function. If not provided, this is generated automatically over Monkhorst-Pack q-point mesh determined by ``dw_spacing``. dw_spacing Maximum distance between q-points in automatic q-point mesh (if used) for Debye-Waller calculation. temperature Temperature for Debye-Waller calculation. If both temperature and dw are set to None, Debye-Waller factor will be omitted. sampling Sphere-sampling scheme. (Case-insensitive) options are: - 'golden': Fibonnaci-like sampling that steps regularly along one spherical coordinate while making irrational steps in the other - 'sphere-projected-grid': Regular 2-D square mesh projected onto sphere. npts will be distributed as evenly as possible (i.e. using twice as many 'longitude' as 'lattitude' lines), rounding up if necessary. - 'spherical-polar-grid': Mesh over regular subdivisions in spherical polar coordinates. npts will be rounded up as necessary in the same scheme as for sphere-projected-grid. 'Latitude' lines are evenly-spaced in z - 'spherical-polar-improved': npts distributed as regularly as possible using spherical polar coordinates: 'latitude' lines are evenly-spaced in z and points are distributed among these rings to obtain most even spacing possible. - 'random-sphere': Points are distributed randomly in unit square and projected onto sphere. npts Number of samples. Note that some sampling methods have constraints on valid values and will round up as appropriate. jitter For non-random sampling schemes, apply an additional random displacement to each point. energy_bins Preferred energy bin edges. If not provided, will setup 1000 bins (1001 bin edges) from 0 to 1.05 * [max energy] scattering_lengths Dict of neutron scattering lengths labelled by element. If a string is provided, this selects coherent scattering lengths from reference data by setting the 'label' argument of the euphonic.util.get_reference_data() function. **calc_modes_args other keyword arguments (e.g. 'use_c') will be passed to ForceConstants.calculate_qpoint_phonon_modes() Returns ------- Spectrum1D """ if isinstance(scattering_lengths, str): scattering_lengths = get_reference_data( physical_property='coherent_scattering_length', collection=scattering_lengths) # type: dict if temperature is not None: if (dw is None): dw_qpts = mp_grid(fc.crystal.get_mp_grid_spec(dw_spacing)) dw_phonons = fc.calculate_qpoint_phonon_modes(dw_qpts, **calc_modes_args) dw = dw_phonons.calculate_debye_waller(temperature ) # type: DebyeWaller else: if not np.isclose(dw.temperature.to('K').magnitude, temperature.to('K').magnitude): raise ValueError('Temperature argument is not consistent with ' 'temperature stored in DebyeWaller object.') qpts_cart = _get_qpts_sphere(npts, sampling=sampling, jitter=jitter ) * mod_q qpts_frac = _qpts_cart_to_frac(qpts_cart, fc.crystal) phonons = fc.calculate_qpoint_phonon_modes(qpts_frac, **calc_modes_args ) # type: QpointPhononModes if energy_bins is None: energy_bins = _get_default_bins(phonons) s = phonons.calculate_structure_factor( scattering_lengths=scattering_lengths, dw=dw) return s.calculate_1d_average(energy_bins)