Exemple #1
0
def main(args):
    ## set the gpu
    if args.gpu:
        os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
    ## check the ckpt path
    path_create('ckpt')
    ## check the model path
    path_create('models')
    ## check the data path
    path_create('data')
    ## check the log path
    path_create('log')
    if args.type == 'train':
        train_main(args)
    elif args.type == 'eval':
        eval_main(args)
Exemple #2
0
def voc_test(eval_steps):
    train_main('latest.pth', split='trainaug')
    eval_main('best_trainaug.pth', eval_steps, 'best')
    eval_main('final_trainaug.pth', eval_steps, 'final')

    settings.LR = settings.LR / 10
    settings.ITER_MAX = settings.TEST_ITER_MAX
    settings.ITER_SAVE = settings.TEST_ITER_SAVE
    settings.ITER_VAL = settings.TEST_ITER_VAL
    train_main('final_trainaug.pth',
               split='trainval',
               val=True,
               reset_steps=True)

    eval_steps = [5, 6, 7]
    eval_main('best.pth', eval_steps, 'trainval_best')
    eval_main('final.pth', eval_steps, 'trainval_final')
Exemple #3
0
    parser.add_argument("--log", type=int, default=log)

    # float
    parser.add_argument("--lr", type=float, default=lr)
    parser.add_argument("--beta", type=float, default=beta)
    parser.add_argument("--dropout_prob", type=float, default=dropout_prob)

    args = parser.parse_args()

    # overwrite params
    midi_op = args.midi_op
    process_collate = args.process_collate
    input_type = args.input_type
    band = args.band
    split = args.split
    score_choose = args.score_choose
    batch_size = args.batch_size
    sample_num = args.sample_num
    chunk_size = args.chunk_size
    lr = args.lr
    log = bool(args.log)
    beta = args.beta
    num_rec_layers = args.num_rec_layers
    z_dim = args.z_dim
    kernel_size = args.kernel_size
    stride = args.stride
    num_conv_features = args.num_conv_features

    train_main()
    eval_main()
Exemple #4
0
        #Run eval
        #Always use all hand annotations
        experiment = Experiment(api_key="ypQZhYfs3nSyKzOfz13iuJpj2",
                                project_name='deeplidar',
                                log_code=False)
        experiment.log_parameter("mode", "evaluation_grid")
        experiment.log_parameters(DeepForest_config)

        args = [
            "--batch-size",
            str(DeepForest_config['batch_size']), '--score-threshold',
            str(DeepForest_config['score_threshold']),
            '--suppression-threshold', '0.1', '--save-path',
            'snapshots/images/', '--model', model, '--convert-model'
        ]

        stem_recall, mAP = eval_main(data=data,
                                     DeepForest_config=DeepForest_config,
                                     experiment=experiment,
                                     args=args)
        results.append({
            "Evaluation Site": site,
            "Pretraining Site": pretraining_site,
            "Stem Recall": stem_recall,
            "mAP": mAP
        })

results = pd.DataFrame(results)

results.to_csv("analysis/site_grid" + ".csv")
Exemple #5
0
def voc_val(eval_steps):
    train_main('latest.pth', split='trainaug')
    eval_main('best_trainaug.pth', eval_steps, 'best')
    eval_main('final_trainaug.pth', eval_steps, 'final')
                                  data,
                                  DeepForest_config,
                                  experiment=experiment)

    #Format output
    experiment = Experiment(api_key="ypQZhYfs3nSyKzOfz13iuJpj2",
                            project_name='deeplidar',
                            log_code=False)
    experiment.log_parameter("mode", "retrain_sequence_evaluation")

    #pass an args object instead of using command line
    retinanet_args = [
        "--batch-size",
        str(DeepForest_config['batch_size']), '--score-threshold',
        str(DeepForest_config['score_threshold']), '--suppression-threshold',
        '0.1', '--save-path', 'snapshots/images/', '--model', trained_model,
        '--convert-model'
    ]

    mAP = eval_main(data=data,
                    DeepForest_config=DeepForest_config,
                    experiment=experiment,
                    args=retinanet_args)

    model_name = os.path.splitext(os.path.basename(model))[0]
    results.append({"Model": model_name, "mAP": mAP})

results = pd.DataFrame(results)
print(results)
results.to_csv("pretraining_size" + ".csv")