def _setup_graph(self): self.pred = self.trainer.get_predictor( ['image'], ['fastrcnn_fg_probs', 'fastrcnn_fg_boxes']) self.df = PrefetchDataZMQ(get_eval_dataflow(), 1) EVAL_TIMES = 5 # eval 5 times during training interval = self.trainer.config.max_epoch // (EVAL_TIMES + 1) self.epochs_to_eval = set([interval * k for k in range(1, EVAL_TIMES)]) self.epochs_to_eval.add(self.trainer.config.max_epoch) get_tf_nms() # just to make sure the nms part of graph is created
def _setup_graph(self): self.pred = self.trainer.get_predictor( ['image'], ['fastrcnn_fg_probs', 'fastrcnn_fg_boxes']) self.df = PrefetchDataZMQ(get_eval_dataflow(), 1) get_tf_nms() # just to make sure the nms part of graph is created