Exemple #1
0
def calc_metric(score_label_u):
    score_label_u = sorted(score_label_u, key=lambda d: d[0], reverse=True)
    precision = np.array(
        [eval.precision_k(score_label_u, k) for k in range(1, 21)])
    ndcg = np.array([eval.ndcg_k(score_label_u, k) for k in range(1, 21)])
    auc = eval.auc(score_label_u)
    mae = eval.mae(score_label_u)
    mrse = eval.mrse(score_label_u)
    return precision, ndcg, auc, mae, mrse
Exemple #2
0
def calc_metric(score_label_u):
    score_label_u = sorted(score_label_u, key=lambda d: d[0], reverse=True)
    precision = eval.precision_k(score_label_u, 3)
    recall = eval.recall_k(score_label_u, 3)
    try:
        f1 = 2 * precision * recall / (precision + recall)
    except:
        f1 = 0
    auc = eval.auc(score_label_u)
    ndcg = eval.ndcg_k(score_label_u, 3)
    return precision, recall, f1, auc, ndcg