Exemple #1
0
def main():
    startup_prog, eval_program, place, config, train_alg_type = program.preprocess()
    eval_build_outputs = program.build(
        config, eval_program, startup_prog, mode='test')
    eval_fetch_name_list = eval_build_outputs[1]
    eval_fetch_varname_list = eval_build_outputs[2]
    eval_program = eval_program.clone(for_test=True)
    exe = fluid.Executor(place)
    exe.run(startup_prog)

    init_model(config, eval_program, exe)

    if train_alg_type == 'det':
        eval_reader = reader_main(config=config, mode="eval")
        eval_info_dict = {'program':eval_program,\
            'reader':eval_reader,\
            'fetch_name_list':eval_fetch_name_list,\
            'fetch_varname_list':eval_fetch_varname_list}
        metrics = eval_det_run(exe, config, eval_info_dict, "eval")
        logger.info("Eval result: {}".format(metrics))
    else:
        reader_type = config['Global']['reader_yml']
        if "benchmark" not in reader_type:
            eval_reader = reader_main(config=config, mode="eval")
            eval_info_dict = {'program': eval_program, \
                              'reader': eval_reader, \
                              'fetch_name_list': eval_fetch_name_list, \
                              'fetch_varname_list': eval_fetch_varname_list}
            metrics = eval_rec_run(exe, config, eval_info_dict, "eval")
            logger.info("Eval result: {}".format(metrics))
        else:
            eval_info_dict = {'program':eval_program,\
                'fetch_name_list':eval_fetch_name_list,\
                'fetch_varname_list':eval_fetch_varname_list}
            test_rec_benchmark(exe, config, eval_info_dict)
Exemple #2
0
def main():
    config = program.load_config(FLAGS.config)
    program.merge_config(FLAGS.opt)
    logger.info(config)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    program.check_gpu(use_gpu)

    alg = config['Global']['algorithm']
    assert alg in ['EAST', 'DB', 'Rosetta', 'CRNN', 'STARNet', 'RARE']
    if alg in ['Rosetta', 'CRNN', 'STARNet', 'RARE']:
        config['Global']['char_ops'] = CharacterOps(config['Global'])

    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    startup_prog = fluid.Program()
    eval_program = fluid.Program()
    eval_build_outputs = program.build(config,
                                       eval_program,
                                       startup_prog,
                                       mode='test')
    eval_fetch_name_list = eval_build_outputs[1]
    eval_fetch_varname_list = eval_build_outputs[2]
    eval_program = eval_program.clone(for_test=True)
    exe = fluid.Executor(place)
    exe.run(startup_prog)

    init_model(config, eval_program, exe)

    if alg in ['EAST', 'DB']:
        eval_reader = reader_main(config=config, mode="eval")
        eval_info_dict = {'program':eval_program,\
            'reader':eval_reader,\
            'fetch_name_list':eval_fetch_name_list,\
            'fetch_varname_list':eval_fetch_varname_list}
        metrics = eval_det_run(exe, config, eval_info_dict, "eval")
        logger.info("Eval result: {}".format(metrics))
    else:
        reader_type = config['Global']['reader_yml']
        if "benchmark" not in reader_type:
            eval_reader = reader_main(config=config, mode="eval")
            eval_info_dict = {'program': eval_program, \
                              'reader': eval_reader, \
                              'fetch_name_list': eval_fetch_name_list, \
                              'fetch_varname_list': eval_fetch_varname_list}
            metrics = eval_rec_run(exe, config, eval_info_dict, "eval")
            logger.info("Eval result: {}".format(metrics))
        else:
            eval_info_dict = {'program':eval_program,\
                'fetch_name_list':eval_fetch_name_list,\
                'fetch_varname_list':eval_fetch_varname_list}
            test_rec_benchmark(exe, config, eval_info_dict)
Exemple #3
0
def train_eval_rec_run(config,
                       exe,
                       train_info_dict,
                       eval_info_dict,
                       is_slim=None):
    """
    Feed data to the model and fetch the measures and loss for recognition
    Args:
        config: config
        exe:
        train_info_dict: information dict for training
        eval_info_dict: information dict for evaluation
    """
    train_batch_id = 0
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
        logger.info(
            "During the training process, after the {}th iteration, an evaluation is run every {} iterations"
            .format(start_eval_step, eval_batch_step))
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
    train_stats = TrainingStats(log_smooth_window, ['loss', 'acc'])
    best_eval_acc = -1
    best_batch_id = 0
    best_epoch = 0
    train_loader = train_info_dict['reader']
    for epoch in range(epoch_num):
        train_loader.start()
        try:
            while True:
                t1 = time.time()
                train_outs = exe.run(
                    program=train_info_dict['compile_program'],
                    fetch_list=train_info_dict['fetch_varname_list'],
                    return_numpy=False)
                fetch_map = dict(
                    zip(train_info_dict['fetch_name_list'],
                        range(len(train_outs))))

                loss = np.mean(np.array(train_outs[fetch_map['total_loss']]))
                lr = np.mean(np.array(train_outs[fetch_map['lr']]))
                preds_idx = fetch_map['decoded_out']
                preds = np.array(train_outs[preds_idx])
                labels_idx = fetch_map['label']
                labels = np.array(train_outs[labels_idx])

                if config['Global']['loss_type'] != 'srn':
                    preds_lod = train_outs[preds_idx].lod()[0]
                    labels_lod = train_outs[labels_idx].lod()[0]

                    acc, acc_num, img_num = cal_predicts_accuracy(
                        config['Global']['char_ops'], preds, preds_lod, labels,
                        labels_lod)
                else:
                    acc, acc_num, img_num = cal_predicts_accuracy_srn(
                        config['Global']['char_ops'], preds, labels,
                        config['Global']['max_text_length'])
                t2 = time.time()
                train_batch_elapse = t2 - t1
                stats = {'loss': loss, 'acc': acc}
                train_stats.update(stats)
                if train_batch_id > start_eval_step and (train_batch_id - start_eval_step) \
                    % print_batch_step == 0:
                    logs = train_stats.log()
                    strs = 'epoch: {}, iter: {}, lr: {:.6f}, {}, time: {:.3f}'.format(
                        epoch, train_batch_id, lr, logs, train_batch_elapse)
                    logger.info(strs)

                if train_batch_id > 0 and\
                    train_batch_id % eval_batch_step == 0:
                    model_average = train_info_dict['model_average']
                    if model_average != None:
                        model_average.apply(exe)
                    metrics = eval_rec_run(exe, config, eval_info_dict, "eval")
                    eval_acc = metrics['avg_acc']
                    eval_sample_num = metrics['total_sample_num']
                    if eval_acc > best_eval_acc:
                        best_eval_acc = eval_acc
                        best_batch_id = train_batch_id
                        best_epoch = epoch
                        save_path = save_model_dir + "/best_accuracy"
                        if is_slim is None:
                            save_model(train_info_dict['train_program'],
                                       save_path)
                        else:
                            import paddleslim as slim
                            if is_slim == "prune":
                                slim.prune.save_model(
                                    exe, train_info_dict['train_program'],
                                    save_path)
                            elif is_slim == "quant":
                                save_model(eval_info_dict['program'],
                                           save_path)
                            else:
                                raise ValueError(
                                    "Only quant and prune are supported currently. But received {}"
                                    .format(is_slim))
                    strs = 'Test iter: {}, acc:{:.6f}, best_acc:{:.6f}, best_epoch:{}, best_batch_id:{}, eval_sample_num:{}'.format(
                        train_batch_id, eval_acc, best_eval_acc, best_epoch,
                        best_batch_id, eval_sample_num)
                    logger.info(strs)
                train_batch_id += 1

        except fluid.core.EOFException:
            train_loader.reset()
        if epoch == 0 and save_epoch_step == 1:
            save_path = save_model_dir + "/iter_epoch_0"
            if is_slim is None:
                save_model(train_info_dict['train_program'], save_path)
            else:
                import paddleslim as slim
                if is_slim == "prune":
                    slim.prune.save_model(exe,
                                          train_info_dict['train_program'],
                                          save_path)
                elif is_slim == "quant":
                    save_model(eval_info_dict['program'], save_path)
                else:
                    raise ValueError(
                        "Only quant and prune are supported currently. But received {}"
                        .format(is_slim))
        if epoch > 0 and epoch % save_epoch_step == 0:
            save_path = save_model_dir + "/iter_epoch_%d" % (epoch)
            if is_slim is None:
                save_model(train_info_dict['train_program'], save_path)
            else:
                import paddleslim as slim
                if is_slim == "prune":
                    slim.prune.save_model(exe,
                                          train_info_dict['train_program'],
                                          save_path)
                elif is_slim == "quant":
                    save_model(eval_info_dict['program'], save_path)
                else:
                    raise ValueError(
                        "Only quant and prune are supported currently. But received {}"
                        .format(is_slim))
    return
Exemple #4
0
def main():
    # 1. quantization configs
    quant_config = {
        # weight quantize type, default is 'channel_wise_abs_max'
        'weight_quantize_type': 'channel_wise_abs_max',
        # activation quantize type, default is 'moving_average_abs_max'
        'activation_quantize_type': 'moving_average_abs_max',
        # weight quantize bit num, default is 8
        'weight_bits': 8,
        # activation quantize bit num, default is 8
        'activation_bits': 8,
        # ops of name_scope in not_quant_pattern list, will not be quantized
        'not_quant_pattern': ['skip_quant'],
        # ops of type in quantize_op_types, will be quantized
        'quantize_op_types': ['conv2d', 'depthwise_conv2d', 'mul'],
        # data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
        'dtype': 'int8',
        # window size for 'range_abs_max' quantization. defaulf is 10000
        'window_size': 10000,
        # The decay coefficient of moving average, default is 0.9
        'moving_rate': 0.9,
    }

    startup_prog, eval_program, place, config, alg_type = program.preprocess()

    feeded_var_names, target_vars, fetches_var_name = program.build_export(
        config, eval_program, startup_prog)

    eval_program = eval_program.clone(for_test=True)
    exe = fluid.Executor(place)
    exe.run(startup_prog)

    eval_program = quant_aware(
        eval_program, place, quant_config, scope=None, for_test=True)

    init_model(config, eval_program, exe)

    # 2. Convert the program before save inference program
    #    The dtype of eval_program's weights is float32, but in int8 range.

    eval_program = convert(eval_program, place, quant_config, scope=None)

    eval_fetch_name_list = fetches_var_name
    eval_fetch_varname_list = [v.name for v in target_vars]
    eval_reader = reader_main(config=config, mode="eval")
    quant_info_dict = {'program':eval_program,\
        'reader':eval_reader,\
        'fetch_name_list':eval_fetch_name_list,\
        'fetch_varname_list':eval_fetch_varname_list}

    if alg_type == 'det':
        final_metrics = eval_det_run(exe, config, quant_info_dict, "eval")
    else:
        final_metrics = eval_rec_run(exe, config, quant_info_dict, "eval")
    print(final_metrics)

    # 3. Save inference model
    model_path = "./quant_model"
    if not os.path.isdir(model_path):
        os.makedirs(model_path)

    fluid.io.save_inference_model(
        dirname=model_path,
        feeded_var_names=feeded_var_names,
        target_vars=target_vars,
        executor=exe,
        main_program=eval_program,
        model_filename=model_path + '/model',
        params_filename=model_path + '/params')
    print("model saved as {}".format(model_path))
Exemple #5
0
def train_eval_rec_run(config, exe, train_info_dict, eval_info_dict):
    train_batch_id = 0
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
    train_stats = TrainingStats(log_smooth_window, ['loss', 'acc'])
    best_eval_acc = -1
    best_batch_id = 0
    best_epoch = 0
    train_loader = train_info_dict['reader']
    for epoch in range(epoch_num):
        train_loader.start()
        try:
            while True:
                t1 = time.time()
                train_outs = exe.run(
                    program=train_info_dict['compile_program'],
                    fetch_list=train_info_dict['fetch_varname_list'],
                    return_numpy=False)
                fetch_map = dict(
                    zip(train_info_dict['fetch_name_list'],
                        range(len(train_outs))))

                loss = np.mean(np.array(train_outs[fetch_map['total_loss']]))
                lr = np.mean(np.array(train_outs[fetch_map['lr']]))
                preds_idx = fetch_map['decoded_out']
                preds = np.array(train_outs[preds_idx])
                preds_lod = train_outs[preds_idx].lod()[0]
                labels_idx = fetch_map['label']
                labels = np.array(train_outs[labels_idx])
                labels_lod = train_outs[labels_idx].lod()[0]

                acc, acc_num, img_num = cal_predicts_accuracy(
                    config['Global']['char_ops'], preds, preds_lod, labels,
                    labels_lod)
                t2 = time.time()
                train_batch_elapse = t2 - t1
                stats = {'loss': loss, 'acc': acc}
                train_stats.update(stats)
                if train_batch_id > 0 and train_batch_id \
                    % print_batch_step == 0:
                    logs = train_stats.log()
                    strs = 'epoch: {}, iter: {}, lr: {:.6f}, {}, time: {:.3f}'.format(
                        epoch, train_batch_id, lr, logs, train_batch_elapse)
                    logger.info(strs)

                if train_batch_id > 0 and\
                    train_batch_id % eval_batch_step == 0:
                    metrics = eval_rec_run(exe, config, eval_info_dict, "eval")
                    eval_acc = metrics['avg_acc']
                    eval_sample_num = metrics['total_sample_num']
                    if eval_acc > best_eval_acc:
                        best_eval_acc = eval_acc
                        best_batch_id = train_batch_id
                        best_epoch = epoch
                        save_path = save_model_dir + "/best_accuracy"
                        save_model(train_info_dict['train_program'], save_path)
                    strs = 'Test iter: {}, acc:{:.6f}, best_acc:{:.6f}, best_epoch:{}, best_batch_id:{}, eval_sample_num:{}'.format(
                        train_batch_id, eval_acc, best_eval_acc, best_epoch,
                        best_batch_id, eval_sample_num)
                    logger.info(strs)
                train_batch_id += 1

        except fluid.core.EOFException:
            train_loader.reset()

        if epoch > 0 and epoch % save_epoch_step == 0:
            save_path = save_model_dir + "/iter_epoch_%d" % (epoch)
            save_model(train_info_dict['train_program'], save_path)
    return