# set up anomaly detectors
    anomaly_detectors = []
    ad_config = defaults.DEFAULT_KNN_CONFIG
    for k_value in K_VALUES:
        ad_config['evaluator_config']['k'] = k_value
        if transformation is None:
            if 'representation_config' in ad_config:
                ad_config.pop('representation_config')
        else:
            ad_config['representation_config'] = {'method': transformation}
        
        anomaly_detectors.append(anomaly_detection.create_anomaly_detector(**ad_config))

    # init test
    test = [utils.load_sequence(TEST_FILE)]
    test_suite = utils.TestSuite(anomaly_detectors, K_VALUES, [test], ['test'])

    # execute test
    test_suite.evaluate(display_progress=True)

    # get plots
    results = test_suite.results

    utils.plots.plot_normalized_anomaly_vector_heat_map(results, K_VALUES, plot=heat_map_plot)
    heat_map_plot.set_title(name)
    heat_map_plot.set_ylabel('k')
    
    full_support_dists.append(results.get_anomaly_detector_averages(K_VALUES, 'full_support_distance'))
    equal_support_dists.append(results.get_anomaly_detector_averages(K_VALUES, 'equal_support_distance'))
    euclidean_dists.append(results.get_anomaly_detector_averages(K_VALUES, 'normalized_euclidean_distance'))
Exemple #2
0
    # set up anomaly detectors
    anomaly_detectors = []
    ad_config = defaults.DEFAULT_KNN_CONFIG
    for k_value in K_VALUES:
        ad_config['evaluator_config']['k'] = k_value
        if transformation is None:
            if 'representation_config' in ad_config:
                ad_config.pop('representation_config')
        else:
            ad_config['representation_config'] = {'method': transformation}

        anomaly_detectors.append(
            anomaly_detection.create_anomaly_detector(**ad_config))

    # init test
    test = [utils.load_sequence(TEST_FILE)]
    test_suite = utils.TestSuite(anomaly_detectors, K_VALUES, [test], ['test'])

    # execute test
    test_suite.evaluate(display_progress=True)

    # get plots
    results = test_suite.results

    utils.plots.plot_normalized_anomaly_vector_heat_map(results,
                                                        K_VALUES,
                                                        plot=heat_map_plot)
    heat_map_plot.set_title(name)
    heat_map_plot.set_ylabel('k')

    full_support_dists.append(