Exemple #1
0
def detect(image, model, num_classes, max_per_image):
    images, meta = pre_process(image, 1)
    images = images.to("cuda")
    output, dets = process(images, model, return_time=True)
    detection_result = []
    dets = post_process(dets, meta, num_classes, max_per_image)
    results = merge_outputs(dets, num_classes, max_per_image)
    images = images.to("cpu")
    image_detection = None
    # image_detection = np.zeros((384,384,3))
    for j in range(1, num_classes + 1):
        for bbox in results[j]:
            # print("the bbox is {}".format(bbox))
            # print("the type of bbox is     ",type(bbox))
            if bbox[4] > 0.01:
                detection_result.append(
                    [bbox[0], bbox[1], bbox[2], bbox[3], bbox[4], j])
                image_detection = add_coco_bbox(image,
                                                bbox,
                                                j - 1,
                                                conf=1,
                                                show_txt=True,
                                                img_id='default')
            # else:
            #     detection_result.append([0,0,0,0,0])
    # cv2.imshow("detection",image_detection)
    # cv2.waitKey(10)
    return image_detection, detection_result
Exemple #2
0
def detect_eval(image, model, num_classes, max_per_image):
    images, meta = pre_process(image, 1)
    images = images.to("cuda")
    output, dets = process(images, model, return_time=True)
    detection_result = []
    dets = post_process(dets, meta, num_classes, max_per_image)
    results = merge_outputs(dets, num_classes, max_per_image)
    # images = images.to("cpu")
    for j in range(1, num_classes + 1):
        for bbox in results[j]:
            if bbox[4] > 0.1:
                detection_result.append(
                    [bbox[0], bbox[1], bbox[2], bbox[3], bbox[4], j - 1])

    return detection_result
Exemple #3
0
def detect(image, model, num_classes):
    images, meta = pre_process(image, 1)

    images = images.to("cuda")
    output, dets = process(images, model, return_time=True)
    # print("the wh is {}".format(output["wh"]))
    dets = post_process(dets, meta, num_classes)
    results = merge_outputs(dets, num_classes, max_per_image)

    for j in range(1, num_classes + 1):
        for bbox in results[j]:
            if bbox[4] > 0.3:
                image_detection = add_coco_bbox(image,
                                                bbox,
                                                bbox[4],
                                                conf=1,
                                                show_txt=True,
                                                img_id='default')
    cv2.imshow("detection", image_detection)
    cv2.waitKey(1)
    return image_detection