Exemple #1
0
    IMG = IMG.astype(int)
    hist = color.histogram(IMG, type='global', n_bin=4)
    assert np.equal(np.where(hist > 0)[0],
                    np.array([37, 43, 58,
                              61])).all(), "global histogram implement failed"
    hist = color.histogram(IMG, type='region', n_bin=4, n_slice=2)
    assert np.equal(np.where(hist > 0)[0],
                    np.array([58, 125, 165,
                              235])).all(), "region histogram implement failed"

    # examinate distance
    np.random.seed(1)
    IMG = sigmoid(np.random.randn(4, 4, 3)) * 255
    IMG = IMG.astype(int)
    hist = color.histogram(IMG, type='region', n_bin=4, n_slice=2)
    IMG2 = sigmoid(np.random.randn(4, 4, 3)) * 255
    IMG2 = IMG2.astype(int)
    hist2 = color.histogram(IMG2, type='region', n_bin=4, n_slice=2)
    assert distance(hist, hist2, d_type='d1') == 2, "d1 implement failed"
    assert distance(hist, hist2, d_type='d2-norm') == 2, "d2 implement failed"

    # evaluate database
    APs = evaluate_class(db, f_class=Color, d_type=d_type, depth=depth)
    cls_MAPs = []

    for cls, cls_APs in APs.items():
        MAP = np.mean(cls_APs)
        print("Class {}, MAP {}".format(cls, MAP))
        cls_MAPs.append(MAP)
    print("MMAP", np.mean(cls_MAPs))
Exemple #2
0
def test_subcost(w1, w2):
    result = evaluate.distance(W, vocab, w1, w2)
    print(result)
Exemple #3
0
    min = -1
    name = ""
    for key, item in distance_dict.items():
        if min == -1:
            min = item
            name = key
        if item < min:
            min = item
            name = key
    return name, min


if __name__ == "__main__":
    color = method_select("HOG")
    data = {}
    for file in os.listdir(".\\database"):
        start_time = time.time()
        data[file] = color.histogram(".\\database\\" + file, type='global')
        tt = time.time() - start_time
        print("\t%5s" % (tt), "초")
        assert data[file].sum() - 1 < 1e-9, "normalize false"
    query = "05_16_오후DJI_0013.tif"
    hist2 = color.histogram(query, type='global')
    distance_dict = {}
    for key, item in data.items():
        distance_dict[key] = distance(item, hist2, d_type='d1')

    for i in range(0, 5):
        name, min = simple_min(distance_dict)
        print(name, min)
        distance_dict.pop(name)