def single_run(filter, spk_src, bg_src, params): import evaluate as eval sp_win = params['sp_win'] spadd_win = params['sp_add_win'] pow_frac = params['pow_frac'] f_filter = params['f_filter'] type = params['sp_type'] thresh = params['thresh'] feats = params['features'] contacts = params['contacts'] n_pts = params['n_pts'] sp, stim, spt_real = eval.mix_cellbg(filter, spk_src, bg_src, spadd_win, pow_frac) sp = eval.filter_data(sp, f_filter) spt, clust_idx, n_missing = eval.spike_clusters(sp, spt_real, stim, thresh, type, sp_win) features = eval.calc_features(sp, spt, sp_win, feats, contacts) uni_metric = eval.univariate_metric(eval.mutual_information, features, clust_idx) multi_metric = eval.k_nearest(features, clust_idx, n_pts=n_pts) n_total = len(spt_real['data']) result_dict= {"cell" : spk_src, "electrode" : bg_src, "spikes_total" : n_total, "spikes_missed" : n_missing, "mutual_information" : uni_metric, "k_nearest" : multi_metric} result_dict.update(params) import socket #from sim_manager import get_version result_dict['host'] = socket.gethostname() #result_dict['dependencies'] ={'evaluate': get_version(eval), # 'spike_sort': get_version(eval.sort)} return result_dict
h5filter = PyTablesFilter(h5_fname) dataset = "/TestSubject/sSession01/el1" sp_win = [-0.4, 0.8] f_filter=None thresh = 'auto' type='max' sp = h5filter.read_sp(dataset) spt_orig = h5filter.read_spt(dataset+"/cell1_orig") stim = h5filter.read_spt(dataset+"/stim") sp = eval.filter_data(sp, f_filter) spt, clust_idx, n_missing = eval.spike_clusters(sp, spt_orig, stim, thresh, type, sp_win) features = eval.calc_features(sp, spt, sp_win, ["P2P", "PCs"], [0,1]) single_metric, knearest_metric = calc_metrics(features, clust_idx) n_total = len(spt_orig['data']) print "Total n/o spikes:", n_total print "Number of undetected spikes: %d (%f)" % (n_missing, n_missing*1./n_total) print "Univariate MI:", single_metric print "K-nearest class. rate:", knearest_metric spike_sort.ui.plotting.plot_features(features, clust_idx) #plt.figure()