def test_dice_coefficient(self):
        # paths
        image_train_path = "/Users/shiwakaga/Amodel_Data/train/*/images/*.jpg"
        image_test_path = "/Users/shiwakaga/Amodel_Data/test/*/images/*.png"
        x_path = "/Users/shiwakaga/Desktop/output/"
        y_path = "/Users/shiwakaga/Amodel_Data/*/amodel/"


        # read images
        import glob
        xs = glob.glob(x_path)
        for img in xs:
            x = imread(y_path + img.split('/')[-1].replace('raw','instrument_instances'))
            y = imread(img)

            # make images binary
            x[x < 0.5] = 0
            x[x >= 0.5] = 1
            y[y < 0.5] = 0
            y[y >= 0.5] = 1

            # calculate dice
            # dice = []
            dice = compute_dice_coefficient(x,y)
            print(dice)
            with open('dice_sorce.txt','a+') as f:
                f.write(img.split('/')[-1]+':'+str(dice)+'\n')
Exemple #2
0
def detect_and_color_splash(model, image_path=None, video_path=None, out_path=None):
    assert image_path or video_path
    out_path = out_path

    # Run model detection and generate the color splash effect
    print("Running on {}".format(image_path))
    # Read image
    image = skimage.io.imread(image_path)
    # Detect objects
    r = model.detect([image], verbose=1)[0]

    #--------- for show -----------#
    splash,mask_bi = color_splash(image, r['masks'])

    # get dice score
    x_path = image_path.replace('raw', 'instrument_instances').replace('img', 'gt')
    gt = imread(x_path)
    gt[gt < 0.5] = 0
    gt[gt >= 0.5] = 1
    dice = compute_dice_coefficient(gt, mask_bi)
    print(dice)
    with open('60_flow_dice_sorce.txt', 'a+') as f:
        f.write(x_path.split('/')[-1] + ':' + str(dice) + '\n')

    # Save output
    file_name = out_path+image_path.split('/')[-1]
    skimage.io.imsave(file_name, splash)
Exemple #3
0
    def test_empty_mask_in_gt(self):
        # test empty mask in ground truth
        mask_gt = np.zeros((128, 128, 128), np.uint8)
        mask_pred = np.zeros((128, 128, 128), np.uint8)
        # mask_gt[50,60,70] = 1
        mask_pred[50, 60, 72] = 1

        surface_distances = compute_surface_distances(mask_gt, mask_pred, spacing_mm=(3, 2, 1))

        average_surface_distance = compute_average_surface_distance(surface_distances)
        hausdorf_100 = compute_robust_hausdorff(surface_distances, 100)
        hausdorf_95 = compute_robust_hausdorff(surface_distances, 95)

        surface_overlap_1_mm = compute_surface_overlap_at_tolerance(surface_distances, 1)
        surface_dice_1mm = compute_surface_dice_at_tolerance(surface_distances, 1)
        volumetric_dice = compute_dice_coefficient(mask_gt, mask_pred)

        print("average surface distance: {} mm".format(average_surface_distance))
        print("hausdorff (100%):         {} mm".format(hausdorf_100))
        print("hausdorff (95%):          {} mm".format(hausdorf_95))
        print("surface overlap at 1mm:   {}".format(surface_overlap_1_mm))
        print("surface dice at 1mm:      {}".format(surface_dice_1mm))
        print("volumetric dice:          {}".format(volumetric_dice))

        self.assertAlmostEqual(surface_dice_1mm, 0.0, delta=self.delta)
        self.assertAlmostEqual(volumetric_dice, 0.0, delta=self.delta)
 def test_bi_score(self,x_path,mask):
     gt = imread(x_path)
     gt[gt < 0.5] = 0
     gt[gt >= 0.5] = 1
     dice = compute_dice_coefficient(gt, mask)
     print(dice)
     with open('60_dice_sorce.txt', 'a+') as f:
         f.write(x_path.split('/')[-1] + ':' + str(dice) + '\n')
Exemple #5
0
    def test_two_cubes(self):
        # two cubes. cube 1 is 100x100x100 mm^3 and cube 2 is 102x100x100 mm^3
        mask_gt = np.zeros((100, 100, 100), np.uint8)
        mask_pred = np.zeros((100, 100, 100), np.uint8)
        spacing_mm = (2, 1, 1)
        mask_gt[0:50, :, :] = 1
        mask_pred[0:51, :, :] = 1
        surface_distances = compute_surface_distances(mask_gt, mask_pred, spacing_mm)
        expected_average_distance_gt_to_pred = 0.836145008498
        expected_volumetric_dice = 2. * 100 * 100 * 100 / (100 * 100 * 100 + 102 * 100 * 100)

        surface_dice_1mm = compute_surface_dice_at_tolerance(surface_distances, 1)
        volumetric_dice = compute_dice_coefficient(mask_gt, mask_pred)

        print("surface dice at 1mm:      {}".format(compute_surface_dice_at_tolerance(surface_distances, 1)))
        print("volumetric dice:          {}".format(compute_dice_coefficient(mask_gt, mask_pred)))

        self.assertAlmostEqual(surface_dice_1mm, expected_average_distance_gt_to_pred, delta=self.delta)
        self.assertAlmostEqual(volumetric_dice, expected_volumetric_dice, delta=self.delta)
Exemple #6
0
 def test_single_pixels_2mm_away(self):
     mask_gt = np.zeros((128, 128, 128), np.uint8)
     mask_pred = np.zeros((128, 128, 128), np.uint8)
     mask_gt[50, 60, 70] = 1
     mask_pred[50, 60, 72] = 1
     surface_distances = compute_surface_distances(mask_gt, mask_pred, spacing_mm=(3, 2, 1))
     surface_dice_1mm = compute_surface_dice_at_tolerance(surface_distances, 1)
     volumetric_dice = compute_dice_coefficient(mask_gt, mask_pred)
     print("surface dice at 1mm:      {}".format(surface_dice_1mm))
     print("volumetric dice:          {}".format(volumetric_dice))
     self.assertAlmostEqual(surface_dice_1mm, 0.5, delta=self.delta)
     self.assertAlmostEqual(volumetric_dice, 0.0, delta=self.delta)