def test(self): image_filename, label_filename = get_filename_list( self.test_file, self.config) with self.graph.as_default(): with self.sess as sess: loss, accuracy, prediction = normal_loss( self.logits, self.labels_pl, self.num_classes) images, labels = get_all_test_data(image_filename, label_filename) #acc_final = [] #iu_final = [] #iu_mean_final = [] loss_tot = [] acc_tot = [] pred_tot = [] #hist = np.zeros((self.num_classes, self.num_classes)) step = 0 for image_batch, label_batch in zip(images, labels): image_batch = np.reshape( image_batch, [1, self.input_h, self.input_w, self.input_c]) label_batch = np.reshape( label_batch, [1, self.input_h, self.input_w, 1]) feed_dict = { self.inputs_pl: image_batch, self.labels_pl: label_batch, self.batch_size_pl: 1 } fetches = [loss, accuracy, self.logits, prediction] loss_per, acc_per, logit, pred = sess.run( fetches=fetches, feed_dict=feed_dict) loss_tot.append(loss_per) acc_tot.append(acc_per) pred_tot.append(pred) print( "Image Index {}: TEST Loss{:6.3f}, TEST Accu {:6.3f}". format(step, loss_tot[-1], acc_tot[-1])) step = step + 1 #per_class_acc(logit, label_batch, self.num_classes) #hist += get_hist(logit, label_batch) #acc_tot = np.diag(hist).sum() / hist.sum() #iu = np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist)) #print("Total Accuracy for test image: ", acc_tot) #print("Total MoI for test images: ", iu) #print("mean MoI for test images: ", np.nanmean(iu)) #acc_final.append(acc_tot) #iu_final.append(iu) #iu_mean_final.append(np.nanmean(iu)) return pred_tot
def test(self): image_filename, label_filename = get_filename_list( self.test_file, self.config) with self.graph.as_default(): with self.sess as sess: saver = tf.train.Saver() saver.restore(self.sess, os.path.join(self.saved_dir, 'model.ckpt-19')) loss, accuracy, prediction = normal_loss( self.logits, self.labels_pl, self.num_classes) images, labels = get_all_test_data(image_filename, label_filename) loss_tot = [] acc_tot = [] pred_tot = [] step = 0 for image_batch, label_batch in zip(images, labels): image_batch = np.reshape( image_batch, [1, self.input_h, self.input_w, self.input_c]) label_batch = np.reshape( label_batch, [1, self.input_h, self.input_w, 1]) feed_dict = { self.inputs_pl: image_batch, self.labels_pl: label_batch, self.batch_size_pl: 1 } fetches = [loss, accuracy, self.logits, prediction] loss_per, acc_per, logit, pred = sess.run( fetches=fetches, feed_dict=feed_dict) loss_tot.append(loss_per) acc_tot.append(acc_per) pred_tot.append(pred) print( "Image Index {}: TEST Loss{:6.3f}, TEST Accu {:6.3f}". format(step, loss_tot[-1], acc_tot[-1])) step = step + 1
def test(self): image_filename, label_filename = get_filename_list(self.test_file, self.config) with self.graph.as_default(): with self.sess as sess: loss, accuracy, prediction = normal_loss(self.logits, self.labels_pl, self.num_classes) prob = tf.nn.softmax(self.logits, dim=-1) prob = tf.reshape(prob, [self.input_h, self.input_w, self.num_classes]) images, labels = get_all_test_data(image_filename, label_filename) NUM_SAMPLE = [] for i in range(30): NUM_SAMPLE.append(2 * i + 1) acc_final = [] iu_final = [] iu_mean_final = [] # uncomment the line below to only run for two times. # NUM_SAMPLE = [1, 30] NUM_SAMPLE = [1] for num_sample_generate in NUM_SAMPLE: loss_tot = [] acc_tot = [] pred_tot = [] var_tot = [] hist = np.zeros((self.num_classes, self.num_classes)) step = 0 for image_batch, label_batch in zip(images, labels): image_batch = np.reshape(image_batch, [1, self.input_h, self.input_w, self.input_c]) label_batch = np.reshape(label_batch, [1, self.input_h, self.input_w, 1]) # comment the code below to apply the dropout for all the samples if num_sample_generate == 1: feed_dict = {self.inputs_pl: image_batch, self.labels_pl: label_batch, self.is_training_pl: False, self.keep_prob_pl: 0.5, self.with_dropout_pl: False, self.batch_size_pl: 1} else: feed_dict = {self.inputs_pl: image_batch, self.labels_pl: label_batch, self.is_training_pl: False, self.keep_prob_pl: 0.5, self.with_dropout_pl: True, self.batch_size_pl: 1} # uncomment this code below to run the dropout for all the samples # feed_dict = {test_data_tensor: image_batch, test_label_tensor:label_batch, phase_train: False, keep_prob:0.5, phase_train_dropout:True} fetches = [loss, accuracy, self.logits, prediction] if self.bayes is False: loss_per, acc_per, logit, pred = sess.run(fetches=fetches, feed_dict=feed_dict) var_one = [] else: logit_iter_tot = [] loss_iter_tot = [] acc_iter_tot = [] prob_iter_tot = [] logit_iter_temp = [] for iter_step in range(num_sample_generate): loss_iter_step, acc_iter_step, logit_iter_step, prob_iter_step = sess.run( fetches=[loss, accuracy, self.logits, prob], feed_dict=feed_dict) loss_iter_tot.append(loss_iter_step) acc_iter_tot.append(acc_iter_step) logit_iter_tot.append(logit_iter_step) prob_iter_tot.append(prob_iter_step) logit_iter_temp.append( np.reshape(logit_iter_step, [self.input_h, self.input_w, self.num_classes])) loss_per = np.nanmean(loss_iter_tot) acc_per = np.nanmean(acc_iter_tot) logit = np.nanmean(logit_iter_tot, axis=0) print(np.shape(prob_iter_tot)) prob_mean = np.nanmean(prob_iter_tot, axis=0) prob_variance = np.var(prob_iter_tot, axis=0) logit_variance = np.var(logit_iter_temp, axis=0) # THIS TIME I DIDN'T INCLUDE TAU pred = np.reshape(np.argmax(prob_mean, axis=-1), [-1]) # pred is the predicted label var_sep = [] # var_sep is the corresponding variance if this pixel choose label k length_cur = 0 # length_cur represent how many pixels has been read for one images for row in np.reshape(prob_variance, [self.input_h * self.input_w, self.num_classes]): temp = row[pred[length_cur]] length_cur += 1 var_sep.append(temp) var_one = np.reshape(var_sep, [self.input_h, self.input_w]) # var_one is the corresponding variance in terms of the "optimal" label pred = np.reshape(pred, [self.input_h, self.input_w]) loss_tot.append(loss_per) acc_tot.append(acc_per) pred_tot.append(pred) var_tot.append(var_one) print("Image Index {}: TEST Loss{:6.3f}, TEST Accu {:6.3f}".format(step, loss_tot[-1], acc_tot[-1])) step = step + 1 per_class_acc(logit, label_batch, self.num_classes) hist += get_hist(logit, label_batch) acc_tot = np.diag(hist).sum() / hist.sum() iu = np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist)) print("Total Accuracy for test image: ", acc_tot) print("Total MoI for test images: ", iu) print("mean MoI for test images: ", np.nanmean(iu)) acc_final.append(acc_tot) iu_final.append(iu) iu_mean_final.append(np.nanmean(iu)) return acc_final, iu_final, iu_mean_final, prob_variance, logit_variance, pred_tot, var_tot
def visual_results(self, dataset_type="TRAIN", NUM_IMAGES=3): #train_dir = "./saved_models/segnet_vgg_bayes/segnet_vgg_bayes_30000/model.ckpt-30000" #train_dir = "./saved_models/segnet_scratch/segnet_scratch_30000/model.ckpt-30000" image_w = self.config["INPUT_WIDTH"] image_h = self.config["INPUT_HEIGHT"] image_c = self.config["INPUT_CHANNELS"] train_dir = self.config["SAVE_MODEL_DIR"] FLAG_BAYES = self.config["BAYES"] with self.sess as sess: # Restore saved session saver = tf.train.Saver() saver.restore(sess, train_dir) _, _, prediction = normal_loss(logits=self.logits, labels=self.labels_pl, number_class=self.num_classes) prob = tf.nn.softmax(self.logits, dim=-1) if (dataset_type == 'TRAIN'): test_type_path = self.config["TRAIN_FILE"] indexes = random.sample(range(367), NUM_IMAGES) #indexes = [0,75,150,225,300] elif (dataset_type == 'VAL'): test_type_path = self.config["VAL_FILE"] indexes = random.sample(range(101), NUM_IMAGES) #indexes = [0,25,50,75,100] elif (dataset_type == 'TEST'): test_type_path = self.config["TEST_FILE"] indexes = random.sample(range(233), NUM_IMAGES) #indexes = [0,50,100,150,200] # Load images image_filename, label_filename = get_filename_list( test_type_path, self.config) images, labels = get_all_test_data(image_filename, label_filename) # Keep images subset of length NUM_IMAGES images = [images[i] for i in indexes[0:NUM_IMAGES]] labels = [labels[i] for i in indexes[0:NUM_IMAGES]] num_sample_generate = 30 pred_tot = [] var_tot = [] for image_batch, label_batch in zip(images, labels): image_batch = np.reshape(image_batch, [1, image_h, image_w, image_c]) label_batch = np.reshape(label_batch, [1, image_h, image_w, 1]) if FLAG_BAYES is False: fetches = [prediction] feed_dict = { self.inputs_pl: image_batch, self.labels_pl: label_batch, self.is_training_pl: False, self.keep_prob_pl: 0.5 } pred = sess.run(fetches=fetches, feed_dict=feed_dict) pred = np.reshape(pred, [image_h, image_w]) var_one = [] else: feed_dict = { self.inputs_pl: image_batch, self.labels_pl: label_batch, self.is_training_pl: False, self.keep_prob_pl: 0.5, self.with_dropout_pl: False } prob_iter_tot = [] for iter_step in range(num_sample_generate): prob_iter_step = sess.run(fetches=[prob], feed_dict=feed_dict) prob_iter_tot.append(prob_iter_step) prob_mean = np.nanmean(prob_iter_tot, axis=0) prob_variance = np.var(prob_iter_tot, axis=0) #THIS TIME I DIDN'T INCLUDE TAU pred = np.reshape(np.argmax(prob_mean, axis=-1), [-1]) #pred is the predicted label var_sep = [ ] #var_sep is the corresponding variance if this pixel choose label k length_cur = 0 #length_cur represent how many pixels has been read for one images for row in np.reshape(prob_variance, [image_h * image_w, 12]): temp = row[pred[length_cur]] length_cur += 1 var_sep.append(temp) var_one = np.reshape( var_sep, [image_h, image_w] ) #var_one is the corresponding variance in terms of the "optimal" label pred = np.reshape(pred, [image_h, image_w]) pred_tot.append(pred) var_tot.append(var_one) draw_plots(images, labels, pred_tot)
def train(self, max_steps=30001, batch_size=3): # For train the bayes, the FLAG_OPT SHOULD BE SGD, BUT FOR TRAIN THE NORMAL SEGNET, # THE FLAG_OPT SHOULD BE ADAM!!! image_filename, label_filename = get_filename_list( self.test_file, self.config) val_image_filename, val_label_filename = get_filename_list( self.val_file, self.config) with self.graph.as_default(): if self.images_tr is None: self.images_tr, self.labels_tr = dataset_inputs( image_filename, label_filename, batch_size, self.config) self.images_val, self.labels_val = dataset_inputs( val_image_filename, val_label_filename, batch_size, self.config) loss, accuracy, prediction = normal_loss( logits=self.logits, labels=self.labels_pl, number_class=self.num_classes) train, global_step = train_op(total_loss=loss, opt=self.opt) summary_op = tf.summary.merge_all() self.saver = tf.train.Saver(tf.global_variables()) with self.sess.as_default(): self.sess.run(tf.local_variables_initializer()) self.sess.run(tf.global_variables_initializer()) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) # The queue runners basic reference: # https://www.tensorflow.org/versions/r0.12/how_tos/threading_and_queues train_writer = tf.summary.FileWriter(self.tb_logs, self.sess.graph) for step in range(max_steps): image_batch, label_batch = self.sess.run( [self.images_tr, self.labels_tr]) feed_dict = { self.inputs_pl: image_batch, self.labels_pl: label_batch, self.is_training_pl: True, self.keep_prob_pl: 0.5, self.with_dropout_pl: True } _, _loss, _accuracy, summary = self.sess.run( [train, loss, accuracy, summary_op], feed_dict=feed_dict) self.train_loss.append(_loss) self.train_accuracy.append(_accuracy) print( "Iteration {}: Train Loss{:6.3f}, Train Accu {:6.3f}". format(step, self.train_loss[-1], self.train_accuracy[-1])) if step % 100 == 0: conv_classifier = self.sess.run(self.logits, feed_dict=feed_dict) print( 'per_class accuracy by logits in training time', per_class_acc(conv_classifier, label_batch, self.num_classes)) # per_class_acc is a function from utils train_writer.add_summary(summary, step) if step % 1000 == 0: print("start validating.......") _val_loss = [] _val_acc = [] hist = np.zeros((self.num_classes, self.num_classes)) for test_step in range(int(20)): fetches_valid = [loss, accuracy, self.logits] image_batch_val, label_batch_val = self.sess.run( [self.images_val, self.labels_val]) feed_dict_valid = { self.inputs_pl: image_batch_val, self.labels_pl: label_batch_val, self.is_training_pl: True, self.keep_prob_pl: 1.0, self.with_dropout_pl: False } # since we still using mini-batch, so in the batch norm we set phase_train to be # true, and because we didin't run the trainop process, so it will not update # the weight! _loss, _acc, _val_pred = self.sess.run( fetches_valid, feed_dict_valid) _val_loss.append(_loss) _val_acc.append(_acc) hist += get_hist(_val_pred, label_batch_val) print_hist_summary(hist) self.val_loss.append(np.mean(_val_loss)) self.val_acc.append(np.mean(_val_acc)) print( "Iteration {}: Train Loss {:6.3f}, Train Acc {:6.3f}, Val Loss {:6.3f}, Val Acc {:6.3f}" .format(step, self.train_loss[-1], self.train_accuracy[-1], self.val_loss[-1], self.val_acc[-1])) coord.request_stop() coord.join(threads)
def test(self): image_filename, label_filename = get_filename_list(self.test_file) with tf.Session() as sess: # Restore saved session saver = tf.train.Saver() saver.restore(sess, tf.train.latest_checkpoint(FLAGS.runtime_dir)) loss, accuracy, prediction = normal_loss(self.logits, self.labels_pl, self.n_classes) images, labels = get_all_test_data(image_filename, label_filename) NUM_SAMPLE = [] for i in range(30): NUM_SAMPLE.append(2 * i + 1) acc_final = [] iu_final = [] iu_mean_final = [] # uncomment the line below to only run for two times. # NUM_SAMPLE = [1, 30] NUM_SAMPLE = [1] for num_sample_generate in NUM_SAMPLE: loss_tot = [] acc_tot = [] hist = np.zeros((self.n_classes, self.n_classes)) step = 0 for image_batch, label_batch in zip(images, labels): image_batch = np.reshape( image_batch, [1, self.input_h, self.input_w, self.input_c]) label_batch = np.reshape( label_batch, [1, self.input_h, self.input_w, 1]) # comment the code below to apply the dropout for all the samples if num_sample_generate == 1: feed_dict = { self.inputs_pl: image_batch, self.labels_pl: label_batch, self.is_training_pl: False, self.keep_prob_pl: 0.5, self.with_dropout_pl: False, self.batch_size_pl: 1 } else: feed_dict = { self.inputs_pl: image_batch, self.labels_pl: label_batch, self.is_training_pl: False, self.keep_prob_pl: 0.5, self.with_dropout_pl: True, self.batch_size_pl: 1 } loss_per, acc_per, logit, pred = sess.run( [loss, accuracy, self.logits, prediction], feed_dict=feed_dict) loss_tot.append(loss_per) acc_tot.append(acc_per) print( "Image Index {}: TEST Loss{:6.3f}, TEST Accu {:6.3f}". format(step, loss_tot[-1], acc_tot[-1])) step = step + 1 per_class_acc(logit, label_batch, self.n_classes) hist += get_hist(logit, label_batch) acc_tot = np.diag(hist).sum() / hist.sum() iu = np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist)) print("Total Accuracy for test image: ", acc_tot) print("Total MoI for test images: ", iu) print("mean MoI for test images: ", np.nanmean(iu)) acc_final.append(acc_tot) iu_final.append(iu) iu_mean_final.append(np.nanmean(iu)) return acc_final, iu_final, iu_mean_final