def create_dataset_global(self, part, file_dir, data_dir, cfg, db): datas = self.data[part] goals = self.goal[part] s_usr, s_sys, r_g, next_s_usr, next_s_sys, t = [], [], [], [], [], [] evaluator = MultiWozEvaluator(data_dir) for idx, turn_data in enumerate(datas): if turn_data['others']['turn'] % 2 == 0: if turn_data['others']['turn'] == 0: current_goal = goals[turn_data['others']['session_id']] evaluator.add_goal(current_goal) else: next_s_usr.append(s_usr[-1]) if turn_data['others']['change'] and evaluator.cur_domain: if 'final' in current_goal[evaluator.cur_domain]: for key in current_goal[evaluator.cur_domain]['final']: current_goal[evaluator.cur_domain][key] = current_goal[evaluator.cur_domain]['final'][key] del(current_goal[evaluator.cur_domain]['final']) turn_data['user_goal'] = deepcopy(current_goal) s_usr.append(torch.Tensor(state_vectorize_user(turn_data, cfg, evaluator.cur_domain))) evaluator.add_usr_da(turn_data['trg_user_action']) if turn_data['others']['terminal']: next_turn_data = deepcopy(turn_data) next_turn_data['others']['turn'] = -1 next_turn_data['user_action'] = turn_data['trg_user_action'] next_turn_data['sys_action'] = datas[idx+1]['trg_sys_action'] next_turn_data['trg_user_action'] = {} next_turn_data['goal_state'] = datas[idx+1]['final_goal_state'] next_s_usr.append(torch.Tensor(state_vectorize_user(next_turn_data, cfg, evaluator.cur_domain))) else: if turn_data['others']['turn'] != 1: next_s_sys.append(s_sys[-1]) s_sys.append(torch.Tensor(state_vectorize(turn_data, cfg, db, True))) evaluator.add_sys_da(turn_data['trg_sys_action']) if turn_data['others']['terminal']: next_turn_data = deepcopy(turn_data) next_turn_data['others']['turn'] = -1 next_turn_data['user_action'] = {} next_turn_data['sys_action'] = turn_data['trg_sys_action'] next_turn_data['trg_sys_action'] = {} next_turn_data['belief_state'] = turn_data['final_belief_state'] next_s_sys.append(torch.Tensor(state_vectorize(next_turn_data, cfg, db, True))) reward_g = 20 if evaluator.task_success() else -5 r_g.append(reward_g) t.append(1) else: reward_g = 5 if evaluator.cur_domain and evaluator.domain_success(evaluator.cur_domain) else -1 r_g.append(reward_g) t.append(0) torch.save((s_usr, s_sys, r_g, next_s_usr, next_s_sys, t), file_dir)
def create_dataset_sys(self, part, file_dir, data_dir, cfg, db): datas = self.data[part] goals = self.goal[part] s, a, r, next_s, t = [], [], [], [], [] evaluator = MultiWozEvaluator(data_dir) for idx, turn_data in enumerate(datas): if turn_data['others']['turn'] % 2 == 0: if turn_data['others']['turn'] == 0: evaluator.add_goal( goals[turn_data['others']['session_id']]) evaluator.add_usr_da(turn_data['trg_user_action']) continue if turn_data['others']['turn'] != 1: next_s.append(s[-1]) s.append(torch.Tensor(state_vectorize(turn_data, cfg, db, True))) a.append( torch.Tensor(action_vectorize(turn_data['trg_sys_action'], cfg))) evaluator.add_sys_da(turn_data['trg_sys_action']) if turn_data['others']['terminal']: next_turn_data = deepcopy(turn_data) next_turn_data['others']['turn'] = -1 next_turn_data['user_action'] = {} next_turn_data['sys_action'] = turn_data['trg_sys_action'] next_turn_data['trg_sys_action'] = {} next_turn_data['belief_state'] = turn_data[ 'final_belief_state'] next_s.append( torch.Tensor(state_vectorize(next_turn_data, cfg, db, True))) reward = 20 if evaluator.task_success(False) else -5 r.append(reward) t.append(1) else: reward = 0 if evaluator.cur_domain: for slot, value in turn_data['belief_state'][ evaluator.cur_domain].items(): if value == '?': for da in turn_data['trg_sys_action']: d, i, k, p = da.split('-') if i in [ 'inform', 'recommend', 'offerbook', 'offerbooked' ] and k == slot: break else: # not answer request reward -= 1 if not turn_data['trg_sys_action']: reward -= 5 r.append(reward) t.append(0) torch.save((s, a, r, next_s, t), file_dir)
def create_dataset_usr(self, part, file_dir, data_dir, cfg, db): datas = self.data[part] goals = self.goal[part] s, a, r, next_s, t = [], [], [], [], [] evaluator = MultiWozEvaluator(data_dir) current_goal = None for idx, turn_data in enumerate(datas): if turn_data['others']['turn'] % 2 == 1: evaluator.add_sys_da(turn_data['trg_sys_action']) continue if turn_data['others']['turn'] == 0: current_goal = goals[turn_data['others']['session_id']] evaluator.add_goal(current_goal) else: next_s.append(s[-1]) if turn_data['others']['change'] and evaluator.cur_domain: if 'final' in current_goal[evaluator.cur_domain]: for key in current_goal[evaluator.cur_domain]['final']: current_goal[evaluator.cur_domain][key] = current_goal[evaluator.cur_domain]['final'][key] del(current_goal[evaluator.cur_domain]['final']) turn_data['user_goal'] = deepcopy(current_goal) s.append(torch.Tensor(state_vectorize_user(turn_data, cfg, evaluator.cur_domain))) a.append(torch.Tensor(action_vectorize_user(turn_data['trg_user_action'], turn_data['others']['terminal'], cfg))) evaluator.add_usr_da(turn_data['trg_user_action']) if turn_data['others']['terminal']: next_turn_data = deepcopy(turn_data) next_turn_data['others']['turn'] = -1 next_turn_data['user_action'] = turn_data['trg_user_action'] next_turn_data['sys_action'] = datas[idx+1]['trg_sys_action'] next_turn_data['trg_user_action'] = {} next_turn_data['goal_state'] = datas[idx+1]['final_goal_state'] next_s.append(torch.Tensor(state_vectorize_user(next_turn_data, cfg, evaluator.cur_domain))) reward = 20 if evaluator.inform_F1(ansbysys=False)[1] == 1. else -5 r.append(reward) t.append(1) else: reward = 0 if evaluator.cur_domain: for da in turn_data['trg_user_action']: d, i, k = da.split('-') if i == 'request': for slot, value in turn_data['goal_state'][d].items(): if value != '?' and slot in turn_data['user_goal'][d]\ and turn_data['user_goal'][d][slot] != '?': # request before express constraint reward -= 1 if not turn_data['trg_user_action']: reward -= 5 r.append(reward) t.append(0) torch.save((s, a, r, next_s, t), file_dir)
def create_dataset_global(self, part, file_dir, data_dir, cfg, db): """ 创建global数据,这个数据记录了用户侧和系统侧的所有状态以及奖励 """ datas = self.data[part] goals = self.goal[part] s_usr, s_sys, r_g, next_s_usr, next_s_sys, t = [], [], [], [], [], [] evaluator = MultiWozEvaluator(data_dir, cfg.d) for idx, turn_data in enumerate(datas): if turn_data['others']['turn'] % 2 == 0: if turn_data['others']['turn'] == 0: current_goal = goals[turn_data['others']['session_id']] evaluator.add_goal(current_goal) else: next_s_usr.append(s_usr[-1]) # 当用户目标无法满足时,切换用户目标 if turn_data['others']['change'] and evaluator.cur_domain: if 'final' in current_goal[evaluator.cur_domain]: for key in current_goal[evaluator.cur_domain]['final']: current_goal[ evaluator.cur_domain][key] = current_goal[ evaluator.cur_domain]['final'][key] del (current_goal[evaluator.cur_domain]['final']) turn_data['user_goal'] = deepcopy(current_goal) s_usr.append( torch.Tensor( state_vectorize_user(turn_data, cfg, evaluator.cur_domain))) evaluator.add_usr_da(turn_data['trg_user_action']) if turn_data['others']['terminal']: next_turn_data = deepcopy(turn_data) next_turn_data['others']['turn'] = -1 next_turn_data['user_action'] = turn_data[ 'trg_user_action'] next_turn_data['sys_action'] = datas[idx + 1]['trg_sys_action'] next_turn_data['trg_user_action'] = {} next_turn_data['goal_state'] = datas[idx + 1]['final_goal_state'] next_s_usr.append( torch.Tensor( state_vectorize_user(next_turn_data, cfg, evaluator.cur_domain))) else: if turn_data['others']['turn'] != 1: next_s_sys.append(s_sys[-1]) s_sys.append( torch.Tensor(state_vectorize(turn_data, cfg, db, True))) evaluator.add_sys_da(turn_data['trg_sys_action']) if turn_data['others']['terminal']: next_turn_data = deepcopy(turn_data) next_turn_data['others']['turn'] = -1 next_turn_data['user_action'] = {} next_turn_data['sys_action'] = turn_data['trg_sys_action'] next_turn_data['trg_sys_action'] = {} next_turn_data['belief_state'] = turn_data[ 'final_belief_state'] next_s_sys.append( torch.Tensor( state_vectorize(next_turn_data, cfg, db, True))) # 由于多轮对话系统,默认最终都是系统说结束语,因此通过系统判断任务是否成功作为整体的奖励 reward_g = 20 if evaluator.task_success() else -5 r_g.append(reward_g) t.append(1) else: # 增加domain_success的奖励,其他的则每增加一轮减少一点损失,用于缩短轮数 todo 什么是 domain_success reward_g = 5 if evaluator.cur_domain and evaluator.domain_success( evaluator.cur_domain) else -1 r_g.append(reward_g) t.append(0) torch.save((s_usr, s_sys, r_g, next_s_usr, next_s_sys, t), file_dir)
def create_dataset_sys(self, part, file_dir, data_dir, cfg, db): """ 创建sys的训练数据 """ datas = self.data[part] goals = self.goal[part] # 系统状态+系统动作+回报+上一轮系统状态+末轮标志位 s, a, r, next_s, t = [], [], [], [], [] # evaluator 全称记录数据 evaluator = MultiWozEvaluator(data_dir, cfg.d) for idx, turn_data in enumerate(datas): # user # 用户侧并没有做数据的更新操作 if turn_data['others']['turn'] % 2 == 0: # 首轮对话加载用户目标 if turn_data['others']['turn'] == 0: evaluator.add_goal( goals[turn_data['others']['session_id']]) # evaluator.add_usr_da(turn_data['trg_user_action']) continue # 错位了,确实表示的下一轮状态 if turn_data['others']['turn'] != 1: next_s.append(s[-1]) # 将当前数据转化为状态向量 s.append(torch.Tensor(state_vectorize(turn_data, cfg, db, True))) # 将当前动作转化为动作向量 a.append( torch.Tensor(action_vectorize(turn_data['trg_sys_action'], cfg))) evaluator.add_sys_da(turn_data['trg_sys_action']) if turn_data['others']['terminal']: # 结束轮 next_turn_data = deepcopy(turn_data) next_turn_data['others']['turn'] = -1 next_turn_data['user_action'] = {} next_turn_data['sys_action'] = turn_data['trg_sys_action'] next_turn_data['trg_sys_action'] = {} next_turn_data['belief_state'] = turn_data[ 'final_belief_state'] # 统计next_s next_s.append( torch.Tensor(state_vectorize(next_turn_data, cfg, db, True))) # 统计奖励, 对于系统动作,判决任务是否完成作为最终奖励依据, # 系统是否完成了真实用户动作所提出的订阅请求,且系统是否回答了真实用户动作所咨询的所有问题 reward = 20 if evaluator.task_success(False) else -5 r.append(reward) # 结束标志位 t.append(1) else: reward = 0 if evaluator.cur_domain: for slot, value in turn_data['belief_state'][ evaluator.cur_domain].items(): if value == '?': for da in turn_data['trg_sys_action']: d, i, k, p = da.split('-') if i in [ 'inform', 'recommend', 'offerbook', 'offerbooked' ] and k == slot: break else: # not answer request # 没有完成对belief_state中的提问,奖励减一 reward -= 1 if not turn_data['trg_sys_action']: # 本轮没有回复奖励减五 reward -= 5 r.append(reward) t.append(0) torch.save((s, a, r, next_s, t), file_dir)